SHELDON JACKSON SCHOOL
National Historic Landmark
Sitka, Alaska

Allen Auditorium

CAMPUS PRESERVATION PLAN
2004

Prepared by:
University of Oregon, Program in Historic Preservation
National Park Service, Alaska Regional Office

Funded by:
The Getty Foundation
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Sheldon Jackson College History</td>
<td>3</td>
</tr>
<tr>
<td>Building History</td>
<td>10</td>
</tr>
<tr>
<td>Illustrated Site Timeline</td>
<td>17</td>
</tr>
<tr>
<td>Landscape Assessment</td>
<td>24</td>
</tr>
<tr>
<td>Landscape Preservation</td>
<td>31</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>36</td>
</tr>
<tr>
<td>Architectural Character and Design Guidelines</td>
<td>44</td>
</tr>
<tr>
<td>Building Reports:</td>
<td></td>
</tr>
<tr>
<td>Ceramics Building</td>
<td>48</td>
</tr>
<tr>
<td>Fraser and Stevenson Halls</td>
<td>53</td>
</tr>
<tr>
<td>Houk House</td>
<td>66</td>
</tr>
<tr>
<td>North Pacific Hall</td>
<td>75</td>
</tr>
<tr>
<td>Power Plant/Laundry Building</td>
<td>93</td>
</tr>
<tr>
<td>Sage Hall</td>
<td>111</td>
</tr>
<tr>
<td>Tillie Paul Manor</td>
<td>124</td>
</tr>
<tr>
<td>Whitmore Hall</td>
<td>140</td>
</tr>
<tr>
<td>Maintenance Plan</td>
<td>157</td>
</tr>
<tr>
<td>Methods of Treatment</td>
<td>160</td>
</tr>
<tr>
<td>Historic Buildings</td>
<td>164</td>
</tr>
<tr>
<td>Future Buildings</td>
<td>167</td>
</tr>
<tr>
<td>Archeological Potential and Monitoring</td>
<td>169</td>
</tr>
<tr>
<td>Fundraising</td>
<td>175</td>
</tr>
<tr>
<td>Conclusion</td>
<td>176</td>
</tr>
<tr>
<td>Resource Appendix</td>
<td>177</td>
</tr>
<tr>
<td>Bibliography</td>
<td>179</td>
</tr>
</tbody>
</table>
INTRODUCTION

In July of 2003, Sheldon Jackson College and the University of Oregon’s Program in Historic Preservation within the School of Architecture and Allied Arts jointly prepared an application for a Campus Heritage Grant from The Getty Foundation. In the application, Sheldon Jackson College and the University of Oregon described their respective roles in the project; Sheldon Jackson College provided building and campus access, timely project review assistance and housing and meal assistance to the investigative teams. The University of Oregon had the lead responsibility for preparing the Sheldon Jackson College Preservation Plan.

The Alaska Regional Office of the National Park Service also provided support and services for this project and the second component of the grant which included producing Historic American Buildings Survey (HABS) drawings of several contributing buildings during the summer of 2004. The finished documents are available at the Library of Congress.

The intent of this Campus Preservation Plan is to provide Sheldon Jackson College with a document that can be used as a resource in their efforts to preserve this significant National Historic Landmark. In the pages that follow, the school’s history and development are explored in detail, including site diagrams illustrating the progression of the school’s expansion. Preservation recommendations have also been put forward regarding the campus landscape and individual buildings which contribute to the National Historic Landmark status. It is the hope of the authors that this document will be used as a resource by the school administrators, particularly the maintenance staff, to move forward in preserving the landscape and buildings.

The historic preservation principles and philosophy that guided this project are based on The Secretary of the Interior's Standards for the Treatment of Historic Properties. Three of the treatments outlined in the Standards have been enlisted for this project and include preservation, restoration and rehabilitation. The preservation and restoration treatments are recommended where original historic materials and features exist. The intent is to protect and stabilize the historic fabric through cyclical maintenance and repair thereby minimizing replacement and new construction. All repairs and replacement are recommended to be accomplished with in-kind material. The principles of rehabilitation have been applied to provide a contemporary, compatible use for a property while retaining its cultural values and character defining features.

The Campus Preservation Plan was accomplished in the spring of 2004 when seven students from the Program in Historic Preservation at the University of Oregon visited the site to inspect the campus and buildings. Under the guidance of professor, Don Peting, and National Park Service historical architect, Grant Crosby, the team accomplished the inspections in a period of a week. The document was prepared by the students on campus in Eugene, Oregon and was completed by June of 2004. The following students developed this document: Shannon Bell, Sueann Brown, Steven Yat Chun Chan, Jamie Gaffke, Vida Germano, Caitlin Harvey and Michael Tornabene. Instrumental in this effort were Sheldon Jackson College maintenance staff, Fred Knowles and Marcel LaPerriere.
Baranof Island, the small point of land located just off the coast of Alaska’s panhandle, southwest of Juneau, was originally inhabited by natives of the Tlingit tribe. Long before European contact was made, these natives developed rich traditions that included a strong sense of artistic expression, exhibited in their beadwork, and intricate woodcarvings and totem poles.\(^1\)

The primary town, located on the west side of the island, is Sitka. The name is derived from the native appellation Shee Atika, meaning “people on the outside of Shee.” (Shee was the native name for Baranof Island and they lived on the seaward side of the island.) Sitka became the center of many events during the Russian period and is now the home of Sheldon Jackson College.

The Russians Arrive

The first documented encroachment of foreigners into Tlingit territory occurred in 1799. These newcomers were Russian and, from the start, relations between the two groups were unfriendly. The Russian-American Fur Trading Company enslaved the local natives, using them to exploit the prolific sea otter. The Tlingits resented this, as well as the interference in their cultural affairs and the loyalty they were demanded to pay to the Russian Tzar.\(^2\)

In 1802, the animosities between the Russians and Tlingits finally erupted. The Tlingits attacked a Russian outpost just north of present day Sitka and killed most of the foreigners and their native Aleut slaves. The Russians took the loss hard and did not retaliate until two years later, resulting in a six-day battle. The Russians prevailed, but the Tlingits were not crushed. Depleted of ammunition, the natives abandoned their stronghold by night, thus preventing a massacre, but subsequently surrendering their dominance of Sitka to the Russians.\(^3\)

In 1808, without the native peoples to hinder their progress, the Russians established Sitka as the capital of the Alaskan territory and it became the hub of the Russian-American Fur Trading Company, its prosperity rivaling that of the Hudson Bay Company. The town flourished with the wealth that fur trading brought to the area and Sitka became known as the "Paris of the Pacific." The depletion of the fur resources soon brought this prosperity, and Russian dominance, to an end. In 1867, Alaska was sold to the United States for the sum of $7.2 million.\(^4\)

Missionaries to Alaska

In 1877, Sheldon Jackson arrived in southeastern Alaska to survey the territory for possible missionary undertakings. Before this, he had been known for establishing missions in the Rocky Mountains and bringing Christianity to the native peoples of the west. His new pursuit was establishing a mission at Wrangell. Later known for introducing reindeer to Alaska as a food source for natives and serving as the state’s commissioner of education, Jackson hailed from Minaville, New York. Born in 1834, he graduated from Princeton Theological Seminary in 1858. After being turned down for mission assignments in Siam and Columbia because he was

2. Ibid.
3. Ibid.
4. Ibid.
“lacking in physique,” Jackson took the task of building home missions in America. He established over a hundred missions and churches in the West before turning to Alaska. He was known as being aggressive and controversial, often tactless, but assertive. He befriended President Benjamin Harrison and lived in Washington D.C. for a time while he lobbied for Alaska’s Organic Act of 1884, which indirectly benefited the funding of education in that state. He never actually settled in Alaska; however, he is remembered as one of the state’s influential forefathers.

Following in Jackson’s footsteps, were fellow missionaries, Reverend John G. Brady, who would later become governor of Alaska, and Fannie Kellogg, a schoolteacher, and niece of a Presbyterian pastor in Portland, Oregon. While Jackson returned to the States and left the mission at Wrangell in Amanda McFarland’s able hands, Brady and Kellogg continued on to Sitka. Kellogg was instrumental in establishing a training school for Tlingit natives in the upper floor of an old Russian era military barracks. The Sitka Training School was officially founded on April 17th, 1878. The purpose of the school was to assimilate the Southeast Alaska population of Tlingit and Haida natives into Euro-American culture. It was modeled after a Pennsylvania boarding school established by Civil War veteran, Richard Henry Pratt, who believed that missionary schools were an effective way to avoid warfare with native peoples as the United States expanded westward.

On opening day, John Brady wrote to Jackson, “The school opened... with 50 present, and after asking God’s blessing upon this beginning of a work, which will surely prove to be one of the most interesting in the history of missions, we began with A B C.” Thus, the educational tradition of Sheldon Jackson College was begun.

The barracks, in which the school operated, burned to the ground in 1882 and the continuation of the Sitka mission seemed bleak. However, Dr. Sheldon Jackson took quick action to aid his compatriots. He initiated a nation-wide fund raising campaign to finance rebuilding. As a result, a new school building was constructed on the site of the present Sheldon Jackson College campus. Brady was responsible for the location of the school, having claimed and surveyed the site and found it ideal due to a ditch that ran through the property and conveyed water from Indian River to the bay, and its position near the edge of town and within a few miles proximity to the Indian Village located at the northwest side of Sitka. Brady transferred his claim to the Presbyterian Board of Home Missions and construction was soon undertaken. Local oral history tells that a historic Tlingit village was once located on the site of the present day college.

7 Genevieve Mayberry, Sheldon Jackson Junior C: an intimate history (NewYork: Board of National Missions of the Presbyterian Church in the U.S., 1953), 7.
9 This sentiment was reiterated in the U.S. Department of the Interior’s, Federal Indian Law (Washington: Government Printing Office, 1958), which was championed by Pratt. The idea was reinforced by Sheldon Jackson, who stated, “It will be much cheaper to spend a few thousand dollars in now educating [Alaska Natives] to citizenship, than a few years hence millions to fight them, when the encroachments of the whites shall drive them to desperation.” National Park Service, National Historic Landmark Nomination: Sheldon Jackson School, (Washington D.C.: United States Department of the Interior, 2001), 19.
10 Mayberry, 10.
The land it sits on is part of a wide delta at the mouth of the Indian River valley, an ideal and picturesque site.11

The Sitka Training School is Established

Work crews cleared this land in the summer of 1882, and the construction of Austin Hall was completed by that autumn. It was a two-story wood frame building constructed from salvaged lumber that came from an abandoned fish cannery in Old Sitka, which was also the site of the Russian's first fort in the region. Austin Hall was used as the boys' dormitory. A log structure, built in 1884, was erected as a girls’ dormitory to house students from the Fort Wrangell School that had been destroyed by fire.12

By 1884, the school was officially known as the Sitka Industrial and Training School and there were 15 buildings on the campus. The school was similar to the Wheelock Academy of Oklahoma, Haskell Institute of Kansas, and Carlisle Institute of Pennsylvania in that the schools were all created with the intent to encourage Native Americans to adopt Euro-American culture.13 The school’s graduates were encouraged to continue lifestyles similar to that experienced on campus after they had left the school. “American style” cottages known as “practice houses” were built near campus and students were given domestic training within them. Eight of these houses existed at first, and soon a community center and various community organizations evolved around them. This aspect of the curriculum influenced the population of Sitka, as the school encouraged students to marry each other and build single-family housing for themselves in town. Living in American style housing was believed to be another method of “civilizing” the natives.14

A few years after the Sitka Industrial and Training School was established, an elementary school component was added to the curriculum and around this time Sheldon Jackson was named Alaska's first General Superintendent of Education, a position he held until 1908.15

In 1888, the (first) museum was constructed on campus to house Sheldon Jackson’s collection of Alaskan artifacts. Throughout his travels he had collected representative items from many of the native tribes, with the concern that such icons of culture and art would someday vanish, unrecorded.16 The museum’s doors opened in 1890, a very eventful year. It was a wood frame building in the form of a native plank house constructed by means of a personal contribution from Dr. Jackson. During this year, the “second generation babies” (children of some of the school’s first students) were baptized at the campus chapel. In addition, an advanced department boasting curriculum in reading, writing, spelling, language, geography, arithmetic, US history, physiology and hygiene was introduced. The school was run with military discipline and great patriotic emphasis.17

By 1895, there were 100 students enrolled at the school, receiving the basics of an English education and practical trade skills. There was a carpenter shop, shoe shop, steam laundry and bakery. The girls were instructed in sewing, cooking and housework. In this year, the current museum was built with funds supplied from Dr. Jackson’s personal finances. Many

11 National Parks Service, 4.
12 Ibid., 4.
13 Ibid., 18, 20.
14 Ibid., 20.
16 Netstate.
17 Mayberry, 16.
of the native students were greatly impressed by the construction in concrete, mystified that loose sand and gravel could be turned into “stone” for building.18 By 1909, there were 15 buildings on campus, including the 1908 Pittsburg House where the superintendent resided. Waterpower had been harnessed on the campus for eventual use in lighting the school through a private electrical plant on campus.19

Dr. Sheldon Jackson died on May 2, 1909 at the age of 75, from complications after surgery. After newspapers had already reported him dead three times over the years, and actually printed his obituary once, it is said that he finally accommodated the newspapers.20 A year later the school was renamed the Sheldon Jackson School in his honor. The campus experienced physical growth in this year as more formal plans for campus construction were made. Stylish new buildings began to be erected in place of the earlier buildings, which had been deemed inadequate and obsolete. The Board of Home Missions made the decision to close the school temporarily while old buildings were replaced with new. When students left campus in August of 1910 for the seasonal break, a contractor and workers were employed to build four dormitories, a heating plant, laundry, schoolroom and gym, all based on explicit plans by New York architects Ludlow and Peabody.21 Built of cedar and designed around a formal quadrangle, these buildings were complete on June 7, 1911. They were equipped with modern lighting and on August 16, 1911, the school was illuminated by electricity for the first time.22

The Alaska Native Brotherhood is Established and Curriculum Expands

1912 saw the organization of the Alaska Native Brotherhood. This influential organization was made possible through the training and religious teachings that Tlingit peoples and other Alaskan natives received at the Sheldon Jackson School.23 Though non-denominational, the Brotherhood consisted largely of Presbyterian members and those who were Sheldon Jackson alumni. It was a self-improvement society and adhered to the assimilationist teachings of the school, which encouraged students to form church-affiliated social groups. The New Covenant Legion, a forerunner to the Alaska Native Brotherhood, actively condemned liquor, dancing, and “heathen” customs. The later Alaska Native Brotherhood was inspired by the political successes of a white-only social club known as the Arctic Brotherhood. The Alaska Native Brotherhood began to imitate the Arctic Brotherhood’s system of local chapters and added political activism to their agenda for moral living and voluntary assimilation. By 1925, nearly every village in Southeast Alaska had an Alaska Native Brotherhood chapter, and members held a yearly gathering in Sitka, known as the Grand Camp. The Alaska Native Brotherhood fought for the legal rights of native Alaskans and achieved conditional citizenship for natives in 1915, self-government for their villages, and sent a representative in the territorial house of representatives.24

At the same time all of this social and political activism was taking place, the Sheldon Jackson School felt the need to consolidate and strengthen its academic offerings, and did this by

\begin{itemize}
\item 18 Ibid.
\item 19 Ibid., 23.
\item 21 National Parks Service, 5.
\item 22 Mayberry, 26.
\item 23 Sheldon Jackson College.
\item 24 National Parks Service, 20.
\end{itemize}
closing out the lower grade levels and leaving elementary education to the jurisdiction of Territorial and Federal schools. In this way, more concentration could be placed on the grammar grades and high school level.\(^{25}\)

In 1914, the campus was equipped with a bona fide “moving picture outfit” where students were able to watch films. The new buildings of 1910-11 were finally dedicated in 1915, and in 1917, a boarding school for the high school level was established. The class consisted of five boys, four girls and their teacher, Lottie Stevenson.\(^{26}\)

Curriculum Transitions During the War Years

World War I affected the school in that a number of male students left their studies to join the armed forces. War efforts were mounted at the campus in the form of bond drives and food conservation. During the same period, the student body was hit hard by influenza. Over 43 cases struck the susceptible natives and the campus was put on emergency status.\(^{27}\)

By 1919, there were 127 students enrolled at Sheldon Jackson School and more were turned away due to lack of facilities. Eighteen Alaskan towns were represented in the school's student body.\(^{28}\) The school was becoming ever more prestigious and received recognition when, in 1923, President Warren G. Harding paid a visit to the campus.\(^{29}\)

The first Student Council for the school was organized in 1930, allowing students a certain amount of self-government privileges and the capacity to work more closely with school staff to express student needs and better the school’s academic and residential offerings. The practice of electing a Student Council came about after students expressed concern over the punishment of some of their peers during an incident involving possession of liquor on campus during the prohibition era.\(^{30}\)

In 1935, the Sheldon Jackson High School was accredited by the Northwest High School Association, making it possible for graduates to transfer to other institutions with valid academic credits and exception from entrance exams. The lower grades had been eliminated one by one so at this time only junior high school grades remained. Demand was growing for post-high school curriculum as well, and the possibility of a junior college arose.\(^{31}\)

A student store was also established in 1935. It carried a capital of $200 and shares at $1 each. Students were allowed to buy stock in the store as well as sell it at the end of each school year. The store carried household goods and luxury items like candy and ice cream, the buying and selling of which supported the home economics and business training curriculums. A student bank was established and issued checks for use at the store.\(^{32}\)

The sawmill, which had existed on the campus almost from the start, burned in 1940. It was quickly rebuilt, however, and was elemental in the construction of the *Princeton-Hall* in 1941. This yacht type boat was built on campus by students under the supervision of a professional boat builder and was then used to shuttle students from their homes to campus. The

\(^{25}\) Mayberry, 26.
\(^{26}\) Ibid., 27, 29.
\(^{27}\) Ibid., 29.
\(^{28}\) Ibid., 9.
\(^{29}\) Ibid., 30.
\(^{29}\) President Harding worshiped at the Presbyterian Church of Sitka. It was his last public worship, and he passed away the next day while traveling. The pew that he occupied during the service is now housed in Sheldon Jackson College’s Stratton Library. Sheldon Jackson College.
\(^{31}\) Mayberry, 33.
\(^{32}\) Ibid., 125.
boat joined the fishing boat S/S (built in 1937) in what was affectionately called the Presbyterian Navy. Both were drafted into the real Navy, however, when the U.S. entered World War II. Fifty-one men and three women from Sheldon Jackson’s student body served in the war.\(^{33}\)

A junior college curriculum was established in 1944 as an extension of the high school program. The school was accredited by the Northwest Association of Schools and Colleges and the name of the school was changed to Sheldon Jackson Junior College. At this time, non-natives were allowed to attend the school for the first time.\(^{34}\) A program for Adult Christian Education was also instituted in which Alaskan natives attended a ten day conference dealing with Bible study, men’s and women’s work and home nursing. This prepared them to return to their villages and propagate the information and the message of the Presbyterian Church.\(^{35}\)

The Last 50 Years

When the city of Sitka was confronted by a lack of adequate hospital facilities in 1949, the doors of the Sheldon Jackson infirmary, housed in Tillie Paul Manor, were opened to citizens. In this same year, the college was made an affiliate member of the Presbyterian College Union.\(^{36}\)

In 1966, the full college curriculum was put into effect. The school was accredited once again by the Northwest Association of Schools and Colleges and became Sheldon Jackson College, the name it bears today. A year later, in 1967, the high school program was discontinued, and curriculum took a more collegiate focus.

The Presbyterian Church, which had possessed authority of the school for the 93 years since its founding, under the jurisdiction of the Board of National Missions of the United Presbyterian Church in the U.S.A., relinquished their ownership in 1972. They turned operation of the school over to an independent board of trustees, though ties with the church have been maintained to this day, through covenant relationships with the Presbyterian Church and the Alaska/Northwest Synod.\(^{37}\)

The campus continued to grow physically as further construction was accomplished on campus in the 1970’s with the building of Stratton library, located where the original chapel had been. The Armstrong Administration building was also built beside Pittsburg House at this time. Pittsburg House was subsequently demolished in 1985.\(^{38}\)

Since the mid-1970's, the school has grown to become a full four-year institution, offering associate and bachelor degrees with a liberal arts emphasis. A great majority of students attend the college with hopes of gaining teaching credentials that will allow them to provide schooling in their own native villages. However, the school also boasts strong natural resources programs. 1974 saw the start of a multi-million dollar state supported aquaculture program that has provided a foundation for the school’s current marine biology curriculum, which is the largest in the United States.\(^{39}\) The college’s physical expansion has included modern dormitory, dining, and gymnasium facilities; most located to the north of the original campus quadrangle.

In 1984, at the invitation of college president, Michael Kaelke, renowned author

\(^{33}\) Mayberry, 34.
\(^{34}\) National Parks Service, 18.
\(^{35}\) Mayberry, 36.
\(^{36}\) Ibid., 37.
\(^{37}\) Sheldon Jackson College.
\(^{38}\) National Parks Service, 5.
\(^{39}\) Hillinger.
James Michener came to the college as a Distinguished Faculty Scholar and, while in residence, composed his novel, *Alaska*. This is one of the most recent distinctions that have contributed to Sheldon Jackson College’s long and progressive history.

From 1985 to 1990, $11 million worth of new construction occurred on the campus. Edwin B. Crittenden, an Anchorage architect served as campus architect and oversaw much of this growth. In 2004, Sheldon Jackson College is experiencing dwindling enrollment and a marked lack of funds. In 1990, the student body consisted of 280 full time students and 35 faculty members. Fourteen years later, there are a mere 125 students on the campus and the faculty and staff consists primarily of volunteer retirees. The school maintains a close relationship with the Presbyterian Church and, in 1990, was obtaining around 20% of its $4.3 million annual budget from that arrangement.

40 Sheldon Jackson College.
41 Hillinger.
CAMPUS BUILDING HISTORY

Early photo of quad, date unknown, from Sheldon Jackson College Archives

Ludlow and Peabody Buildings

The six buildings that form the historic core of the Sheldon Jackson College campus were designed by the New York architectural firm of Ludlow and Peabody in 1910. These buildings replaced the original campus buildings which dated to 1882 but were poorly constructed and had fallen into disrepair. William Orr Ludlow received his architectural degree from Stevens Institute of Technology in Hoboken, New Jersey in 1882. Charles S. Peabody studied architecture at Harvard and received his degree from the Ecole des Beaux-Arts in Paris in 1908. Ludlow and Peabody formed their partnership in 1909. At least one of the architects visited the campus prior to preparing the new campus plan.43

The six Ludlow and Peabody buildings are now known as Stevenson, North Pacific, Allen, Whitmore, Fraser and the Power Plant/Laundry Building. They were all built between 1910 and 1911. All but the Power Plant are sited in a symmetrical arrangement around an open quad which is consciously oriented to the south providing views of Sitka Sound and Mount Edgecomb beyond. Their architectural style has been described as “Eclectic Tudor Gothic mixed with a little Eastern Stick and a pinch of Greene and Greene’s Bungalow Craftsman stirred in with some Adirondack Lodge”.44

The buildings retain most of their historic character on the exterior. All feature combination hip and clipped gable roofs with wide overhangs supported by heavy timber brackets. They are clad with wood shingle siding on the lower levels and board and batten siding on the upper levels. Windows have multiple panes in double hung wood sashes. Most of the buildings have large entry porches, supported by large square wood columns with chamfered corners. All the buildings have experienced changes in roofing material, exterior paint schemes, relocation of bathrooms, removal of balconies and removal of a panel detail below the windows. The original wood shingle roofs have all been replaced with composition asphalt shingles.

43 Ibid., 9
44 Edwin B. Crittendenen, The Architecture of the Sheldon Jackson College Campus (Sitka, Sheldon Jackson College Press, 1991), 16
Initially, the doors and window sashes were painted white, while the remaining surfaces, including the shingle and board and batten sidings were stained. This treatment continued until at least 1929, when a contract called for all exterior walls and eaves to receive two coats of stain in the following formula: 20 gallons of diesel oil, 60 pounds Venetian red pigment, one gallon creosote, 2 gallons boiled linseed oil and lamp black to suit. Building trim was to receive a darker stain and doors and sashes were to be painted. Later, all surfaces that had been stained were painted brown and in 1972 the buildings were painted in the current scheme of brown paint (now known as Sheldon Jackson Brown) on the shingle siding and white on the window sashes and the upper level board and batten.

Originally, the five buildings facing the quad had second story wooden balconies at each end of the building. Associated with the balconies were exterior wall mounted ladders to be used as fire escapes. Ghosts of these balconies can still be seen. Original plans specified casement windows leading to the balconies. Early photographs indicate the balconies remained until at least 1950, but were removed by 1959. The casement windows associated with the balconies remain in some locations.

The original plans specified a panel detail below each of the first floor windows on all of the buildings. The plans show the trim on the side of the windows extending down to the top of the water table. The area below the window was shown as a wood panel trimmed with molding to create a recessed panel effect. Early photos indicate these panels were installed and remained in place until at least 1935, but by 1959 most of these panels had been removed and the area covered in shingles to match the surrounding walls. These details were not removed from windows located in the sheltered areas of the porches, and can still be seen there today.

45 Contract between R.K. Burke and Sheldon Jackson School, May 7, 1929; Sheldon Jackson College Archives.
46 Crittenden, 18.
Stevenson, North Pacific, Whitmore and Fraser Halls were originally used as dormitory buildings. An early change common to the four dormitory buildings was the relocation of the bathrooms. A 1911 article in the *Thlinget* described the bathrooms being built in the dorms and predicted “bath day will surely be a joy forever in the new school”.\(^{47}\) By 1922, the joy had faded. A funding request that year indicated “the baths and toilets were all placed on the second floors of the respective buildings and the result has been to make the room under them useless through leakage which is impossible to prevent. The only course is to remove them to the first floors. This we did in the large boys building last year and find the change most satisfactory.”\(^{48}\)

In addition to the above changes, each building has also been altered to accommodate changes in use over time. These changes are best described building by building.

Stevenson Hall

Stevenson Hall was originally designed as a dormitory for younger girls. It was named for Mrs. Caroline Stevenson, who served as the Synodical president of California for many years and donated funds for the building’s construction. In plan, the building was designed with common spaces for reading, sewing and playing on the first floor and two large, open rooms that could accommodate 21 beds each on the second floor. A small addition was built on the west side of the building for the bathroom relocation in the 1923. The large dorm rooms were divided into smaller rooms in the 1950s to allow greater privacy for the girls. In 1971, the first floor was converted to dorm rooms. The building is now used for administrative offices on the first floor and housing for the Volunteers in Mission on the second floor. A second stairway has been added on the interior, near the center of the building. The north entrance to the front porch was removed after 1935. This entrance matched the north entrance to the porch on Fraser Hall, which remains intact.

\(^{47}\) *The Thlinget*; vol. 1 no. 7; February 1911, 1

\(^{48}\) Letter to Edna R. Voss, Superintendent of Field Work, NY, NY; January 6, 1922; Sheldon Jackson Archives.
North Pacific Hall

North Pacific Hall was built as a dormitory for older girls. It was named for the North Pacific Board of Missions which raised funds for its construction. Like Stevenson, the original plan allowed for open, multiple bed dorm space on the second floor and common areas, including a dining room, on the first floor. North Pacific has also been remodeled, changing the layout to comprise smaller rooms along a double loaded corridor on both levels, which accommodated changing patterns of dorm and office use. The building has been used for classrooms, offices, the Career Education Center, Alaska State Trooper Academy and Forest Service programs. It currently retains a dorm room layout on the second floor for short term housing and offices on the first floor.

Allen Hall

Allen Hall was referred to as the Main Building in the Ludlow and Peabody plans. It was named for Richard H. Allen whose wife contributed construction funds in his memory due to his interest in the school. The building is sited in a prominent location at the center of the five buildings facing the quad. The building originally contained a gymnasium on the first floor and classroom spaces on the second floor. By the late 1920s the gymnasium space was being used for assemblies. Early photographs indicate that the front porch was enclosed some time between 1950 and 1967. This may have been done at the time that the gymnasium was converted to an auditorium in 1953. Currently, the interior of the building is in a semi-completed state, awaiting more funding for the rehabilitation of the auditorium and second story class rooms. A large two-story addition, containing a lobby, elevator and restrooms, has been partially constructed on the east side of Allen Hall. It too awaits additional funding for completion.

Whitmore Hall

Whitmore Hall was originally called Home Missions Monthly Hall in honor of the Presbyterian magazine of that name, which raised funds for the buildings through a special subscription drive. In 1974, it was renamed for Gladys Whitmore who taught science and served in a variety of other capacities at the school from 1939 to 1975. Whitmore Hall was built as a dormitory for older boys and like the other dorms, was designed with large open dormitory spaces on the second floor and commons on the first floor. The building has undergone changes similar to the other dormitory buildings as large open rooms have been divided into smaller ones. In 1948, a bathroom addition was built on the back (north) side. The addition was built buy students and staff using concrete block made on campus with a hand block making machine. This was the first use of concrete block in Sitka. The building has been used to house the campus mailroom and computer center. The second floor is now used for dormitory space and the first floor is used for offices.

Fraser Hall

Fraser Hall was named for Thomas Fraser who was associated with the Women’s Board of Home Missions in California. His daughter, Julia Fraser, contributed construction funds in his memory. Fraser Hall was built as a dormitory for younger boys and has undergone changes similar to the other dormitory buildings as large open rooms have been divided into smaller ones. An aerial photo from the 1950s indicates the construction of an addition to the east side of the building. The addition has since been removed; however, and the building has been returned to its original footprint. There are currently classrooms and faculty offices on the second floor and the campus copy center, computer center and more faculty offices on the first floor.

Power Plant and Laundry Building

The Power Plant and Laundry Building was included in the original 1910 Ludlow and Peabody campus design and its construction was completed in 1911. The centralized production of hot water and steam was innovative in the early twentieth century, but interestingly, American Laundry Machinery Company clothes washers were operating in the building by 1915. Later, an addition was constructed on the north side of the building for coal storage. It was probably only used for a short time, as coal was not widely available to the school. An oil boiler was later installed, though the date of this change is unclear. Early photos show a bell tower on the roof of the building. The belfry no longer exists and it was believed to have been dismantled by the 1950s. A hole exists in the roof where the bell was once mounted. The bell itself now sits in front of Allen Hall as part of the landscape of the main quadrangle. The building still serves as a laundromat. The original oil fired boilers in the Power Plant operated until the 1950s and were replaced by the existing boilers. The building became obsolete when the College began acquiring steam from the City of Sitka’s waste burning facility. A standby steam generator is located on campus.

4 Ibid.
Other buildings, which were not a part of the Ludlow and Peabody campus plan, are located outside of the main quadrangle. They too are significant to the campus and date to early periods in the college’s history. Each is unique in design, though largely compatible with the Ludlow and Peabody buildings, providing visual cohesion among the campus’ historic buildings.

Tillie Paul Manor

Tillie Paul Manor, the English Cottage style bungalow located west of the central quadrangle, across Jefferson Street from the campus, was constructed in 1927, and was named after Mathilda Kinnon-Paul Tameree. Tameree was nicknamed “Tillie Paul” during her 17-year tenure at the College where she acted as a spokesperson for both native and Caucasian students. The house was dedicated on February 7th, 1927.50 Designed to serve as the school’s infirmary and hospital for SJC’s student body (Sheldon Jackson School at that time of construction), Tillie Paul Manor also served as the town hospital from 1949 to 1955. It dealt with many maternity cases during that time. In 1978, the building was altered to accommodate student apartments by remodeling the interior partitions. Today, the building is unused, requiring rehabilitation efforts to make it habitable.

Houk House

Houk House, located to the south of Tillie Paul Manor and west of the campus quadrangle, was started in 1926 and completed in 1928. Houk House was built on the foundation of the Lottie Hapgood Cottage, which burned in 1926. It is uncertain whether the second story was original, but by 1930, it existed. All domestic science activities were centralized in this building, enforcing the portion of the curriculum that would teach female students to run a household in an American style home. In 1951, a second addition was constructed to accommodate four modern kitchen units. A third change occurred in 1978 when the house was remodeled to accommodate rooms and apartments for staff. Currently, the original portion of the house is being used as the College’s guesthouse, providing quarters for campus visitors, and the 1951 addition still serves as staff apartments.

Ceramics Building

The Ceramics Building, located to the north of North Pacific Hall, was built in 1911.51 Originally, it was used as a commissary for the campus staff. The ceramics class was first introduced in 1954, and was housed in the Sage Building. In the summer of 1978, the class was moved into the commissary structure and it was renamed the Ceramics Building. Today, the Ceramics Building is used as the ceramics studio with a kiln located in a shed at the rear of the structure.52

Sage Hall

Sage Hall was designed by the school’s architect, N. Lester Trost. It was constructed during the summer of 1929 and dedicated on May 22, 1930. Named after Russell Sage, Sage Hall is a two-story, reinforced concrete building, which “originally was painted white.”

50 Ibid.
51 National Historic Landmark Nomination, National Register of Historic Places Registration Form, 5.
52 National Historic Landmark Nomination, National Register of Historic Places Registration Form, 7.
sources claim that it is in the Modified Gothic style; however, its block-like form and geometric
detailing make it much more compatible with Art Deco or the like.

The building was constructed on the site of the Elliott F. Shepard Industrial Building,
which was constructed in 1910 and housed a shop and hydroelectric power plant. The Shepard
Industrial Building was demolished to make way for Sage Hall, which supported the
hydroelectric plant, a print shop, a shoe-making workshop, and a carpenter shop and machine
shop. Students learned to repair their shoes, make furniture and basic pipe work here. The
hydroelectric plant is still intact but does not operate today. Originally, it was able to provide
electricity to support the entire campus. It is believed that the existing generator is original to the
building, as the plaque on generator dates it to 1929.

In 1955, the first floor was remodeled to accommodate science laboratories, a small green
house and an aquarium for local aquatic plants and animals. Previously, the ceramics department
was located where the chemistry laboratory is currently. Additional renovations occurred in 1961
and created three classrooms and an art room on the second floor.

In 1974, the College received a 2-year grant from the Louis and Manuel Hill Family
Foundation to develop an applied fisheries program for Alaskan Natives. The grant enabled the
College to make modifications to Sage Hall so that it could house the equipment necessary to
incubate Echo Pink and Chum salmon. These modifications were made in 1975 -76. Today,
Sage Hall houses the science, forestry, and fisheries programs as well as the salmon aquaculture
program’s spawning and rearing tanks.
ILLUSTRATED SITE TIMELINE

Construction Dates Unknown
A. Boys Residence
B. Wood House
C. Bakery
D. Girls Residence
E. Girls Home
F. Chapel
G. Industrial Building
H. Girls Hospital
A. 1889 Sheldon Jackson Museum
B. 1900 North Cottage (location unknown)
1910-1911
A. Stevenson Hall
B. North Pacific Hall
C. Ceramics Building
D. Richard H. Allen Memorial Building
E. Whitmore Hall
F. Power Plant
G. Fraser Hall
H. Quadrangle
A. 1913 Store House (now Ceramics Building)
B. 1914 Presbyterian Manse / Ocean Vista Cottage (location unknown)
C. 1914 Nancy Craig Cottage (location unknown)
D. 1915 West Cottage
E. 1918 Houk House (rebuilt after fire in 1928)
A. 1926 Tillie Paul Manor
B. 1926 Ada F. Pears Cottage (location unknown)
C. 1929 Sage Building
D. 1930s Sawmill (rebuilt after fire in 1940)
E. 1930s Gymnasium
A. 1957 Austin House (President’s House)53
B. 1955 ca. Yaw Hall

53 The dates up to this point are based on information in the National Historic Landmark Nomination. The dates beyond this point were gathered from sources in the Sheldon Jackson College library
1970 – Present
 1974 Roland Armstrong Administration Building
 1974 Stratton Hall
 1977 Metlakatla Apartments
 1979 Yaw Chapel
 1987 Hame PE Complex
 1986 Brady Apartments
 1988 Sweetland
 1990’s Richard H. Allen Auditorium Addition

Survey Date: 6/1/04
Historical Significance

The landscape of the Sheldon Jackson College campus is important because it is the setting for the historic buildings. The 1910-1911 Ludlow and Peabody campus plan included buildings constructed around a quadrangle. This symmetrical plan is significant as the first formal campus plan in Alaska. Such formal plans were developed on the East Coast, most notably in Thomas Jefferson’s plan for the University of Virginia. Ludlow and Peabody continued use of the formal campus plan in many of their university projects on the East Coast, including the Peabody Teachers College, Stevens Institute of Technology, and Skidmore College. Later they brought the convention to Alaska as well.54

This c.1898 photo depicts the shoreline of eastern Sitka. Sheldon Jackson College is located at the bottom portion of this photograph.

54 NHL Nomination, 5.
An undated photograph (c.1910) shows the unlandscaped quad soon after the completion of the Ludlow and Peabody buildings.

Character-Defining Features

- A grade that slopes to the south.
- An unobstructed view of Sitka Sound.
- A focal element in the center of the quad consisting of a flag pole located at the convergence of pedestrian paths.
- Axial symmetry with a focus on Allen Hall.
- A forecourt south of Allen Hall.
- Buildings that are oriented to face the quad.
- Open spaces between buildings.
- Plantings limited to the perimeter of the quad.
- An expanse of lawn crossed by concrete pedestrian paths.
- Gate posts at the southeast and southwest corners of the quad, marking the location of historic roadways.
- Quad boundaries delineated by buildings and landscape features.

Current Condition

The landscape is currently in good condition, while the historic integrity is fair due to various modifications.

- The grade that slopes to the south remains the same.
- The unobstructed views of Sitka Sound have become limited by trees planted along the south elevation of North Pacific Hall, and near the flag pole in the center of the quad.
- The focal point at the center of the quad is reinforced by a large spruce tree growing near the flagpole.
The flag pole and converging dirt pedestrian paths are visible in this undated historic photograph.

- The axial symmetry of the quad remains similar to that established by Ludlow and Peabody’s campus plan.
- The forecourt of Allen Hall is no longer intact. A memorial bell and plantings are located to the west of center along Allen Hall’s south elevation. This has undermined the quad’s symmetry.
- The historic buildings still maintain orientation toward the quad. However, Armstrong Hall is now located inside the boundaries of the quad. This has affected the quad’s symmetrical design and open quality.
- The open space between the historic buildings has been affected by parking lots near Fraser, Stevenson, and North Pacific Halls. Open space is further enclosed with trees planted between the buildings. Additionally, the addition to the east elevation of Allen Hall has obstructed space between Allen and Whitmore Halls.

The changing planting pattern is seen in this 1959 photograph that shows (from left to right) Whitmore Hall, Fraser Hall, and the museum. Plantings along the perimeter of these buildings did not occur until the 1930s.
All of the existing trees were removed to create the quad and originally, the buildings had no plantings around them. By the 1935, there were plantings around the buildings, although these were limited to low-lying shrubs. Trees were planted in the center of the quad and a baseball diamond was established in the quad’s northeast corner, encroaching upon the quad’s original open lawn. In 1936, two trees flanked the central dirt path that led to Allen Hall. These two trees reinforced the focal point of the quad. By the 1950s, trees were planted around the buildings, which encroached on the open space between the buildings and created a visual barrier between the buildings and the quad.

This September of 1936 photograph shows a view of the quad looking west. Note the central path flanked by two trees and second base of the baseball diamond located in the right edge of the photograph. Courtesy of Alaska State Library, Historical Collections.

This August of 1935 photograph shows the east half of the quad. Note the dirt pathway in the foreground and the baseball backstop in the upper left corner of the quad. Image courtesy of Stratton Library Archives, Sheldon Jackson College.
This undated photograph shows the two trees flanking the central dirt pathway, as well as the spruce tree and flagpole. These elements maintained the quad’s central focal point.

- The historic dirt paths are now paved with concrete.
- In the 1940s two roadways were established through the quad. These roadways came in from the quad’s southern corners and met at the center of the quad. The roadways have been removed but concrete gateposts at the southwest corner of the quad illustrate where one of the roadways entered the campus. Identical gateposts at the southeast corner are now missing.
- The southern boundary of the quad terminates at a concrete sidewalk along Lincoln Street. The wood post and wire mesh fence that once delineated the southern boundary of the quad has been removed.

This pre-1940s photograph shows the southern boundary of the quad defined by a wood and wire fence, and several trees planted just north of the fence.
• Parking lots along the east and west perimeters of the quad diminish the historic integrity of the quad by drawing attention away from the central focus of the plan and blurring the boundary lines of the quad.

The roadways terminated at a unpaved parking lot in the northeast corner of the quad in the 1950s and 1960s, as shown in this undated photograph.

• Roadways around the quad move people around the central landscape feature instead of through it. The north side of the quad currently is now bordered by a fire lane. There is a gravel roadway north of North Pacific Hall and between Whitmore Hall and the Power Plant/Laundry Building. There is also a large parking lot associated with the fire lane that encourages entry to the quad from the north instead of from the south as originally intended.

Treatment Recommendations
The recommendations in this proposal are designed to maintain the remaining historic character-defining features while allowing for new uses.

Quadrangle:
The current slope of the quad should remain the same, because it is a historic characteristic of the quad. Axial symmetry should remain intact, and the forecourt in front of Allen Hall should be reestablished as the focal point of the axis. This can be done through the removal of the bell and surrounding vegetation that stand in front of the main entrance of Allen Hall. All existing buildings and any new construction around the quad should face the center of the quad and should be located along the perimeter only. The quad’s boundaries should be further defined with plantings to limit the visual impact of the parking lots on the east and west sides. The two existing parking lots can remain in their current locations because parking is needed to facilitate business at the museum and Stevenson Hall. However, removal of the eastern
portion of the west parking lot should occur so that it does not extend past east elevation of Stevenson Hall. No new parking lots or additional parking spaces should be built near in close proximity to the quad in order to maintain the historic integrity of the quad’s open space.

Space between buildings:

The open space between the historic buildings should remain open. These spaces should be landscaped with grass. Pedestrian pathways should remain and vehicle access should be restricted. Maintaining the open spaces between buildings will enforce the historic character of the original campus plan.

Circulation:

The pedestrian paths crossing the quad should remain; however, further investigation is needed to determine the paths’ historic surfacing. The concrete paths should be removed and the paths should then be resurfaced with historically accurate materials (simple dirt paths are probably most accurate). The roadways through the quad should be reestablished and restored to their historic surfacing but should be used mainly as pedestrian ways, with vehicle access restricted. The roadways should come to represent the main approach to the campus, with the concrete entrance gates used to mark the entrances. Vehicle access to the fire lane bordering the north side of the quad should be limited and it should be used primarily as a pedestrian path. The fire lane should be surfaced with a historically appropriate material, as determined by historic photographs. The typical landscape surfacing of the historic period should be used for the fire lane because it defines the north boundary of the historic quadrangle.

Landscape features:

No trees, shrubs or other prominent vegetation should be located in the quad. Features placed around the perimeter of the quad should show sensitivity to the quad’s axial symmetry. The fencing originally located along the southern boundary of the quadrangle should be restored. The fencing should be of the same material, size, and type as the original fence, which can be determined by looking at historic plans and photographs. The concrete gates at the southwest corner of the quad, which denote the entrance to the original roadways should be restored to their intended use (i.e. signage should be removed). At the southeast corner identical gates should be reconstructed to replace those that were removed. Totems and other features that may be added to the landscape in the future should be placed along the southern perimeter of the quad to define the boundary between the campus and the road and give those objects greater visibility. Special consideration should be given to landscaping on the north side of the quad, behind the buildings, due to the increased traffic introduced by the fire lane and parking lot located behind Allen Hall.

Plantings:

The quad should remain as an open lawn, with planting restricted to the edges of the quad. Trees and other large vegetation should not be planted in the quad. In addition, trees should not be planted in front of the buildings in order to maintain unobstructed views from the buildings. Only shrubs should be planted in front of the buildings, and should be arranged so that they reinforce the entry points to buildings. Removing existing trees in front of buildings and the middle of the quad is the most appropriate way to restore the views.
LANDSCAPE PRESERVATION

In regards to the landscape, the goal of Sheldon Jackson College is to preserve and maintain the symmetrical quadrangle. The campus landscape is important because it is the setting for the historic buildings. The Ludlow and Peabody campus plan included buildings constructed around a quadrangle. For this reason, it is important to maintain the campus landscape’s historic features. This symmetrical quadrangle plan is significant as the first formal campus plan in Alaska.

Historic aerial view of the campus quadrangle.

A treatment and maintenance plan are essential to the overall preservation plan. The landscape recommendations will provide guidance for initial and future work on the campus landscape. The landscape encompasses everything that is on campus – vegetation, structures and buildings, views – and how all these components relate to one another. The recommendations in this document are designed to maintain the remaining historic character-defining features while allowing for new uses.

Inventory and Research

Prior to conducting maintenance or treatments, a thorough historical research and a field inventory should be completed. This research should utilize all resources available, especially historic photographs. The University of Oregon students assembled an inventory of the campus during their visit in April 2004, and their work may be referenced. Additional research may be needed to augment any gaps in the document, however.

Quadrangle

The slope of the quadrangle should remain the same as it is currently, because it is a characteristic of the historic campus design. Axial symmetry should remain intact, which requires that the plantings and bell in front of Allen Hall be removed and the forecourt restored in order to allow the main entrance of Allen Hall to be the beginning point of the axis. No new construction shall occur within the quad’s boundaries.
Space Between Buildings

The open spaces between the buildings that face the quad should remain open. These spaces should be surfaced with lawn and the pedestrian pathways should be maintained. No part of the quad should be used for vehicle parking. Maintaining the open spaces between buildings maintains the historic character of the original campus plan.

Landscape Features

No major landscape features should be located within the quad. Features placed at the perimeter of the quad should follow the quad’s axial symmetry. Fencing, historically located at the southern boundary of the quad, should be restored. The fencing should be of the same material, size, and type as the original fence as determined by historic plans and historic photographs. The gates denoting the original roadways should be preserved if remaining and reconstructed if no longer there. Totems and other features should be placed along the southern perimeter of the quad for greater visibility and to further define the boundary of the quad and the road. Features placed along the north side of the buildings that face the quad should be limited. Special consideration should be given to landscaping on the north side of the quad because of the increased access that will occur due to the new fire lane and parking lot located north of the quad.

Existing Buildings

The original Ludlow and Peabody buildings and the Sheldon Jackson Museum shall remain in their current locations. The Armstrong Building should be removed from its current location, for it destroys the symmetrical plan and the open lawn of the quad. The new location for the Armstrong Building ought to be outside the perimeter of the quad; the new location should not block the view of Sitka Sound from the historic buildings.

Plantings

The quad should remain an open lawn, with planting limited to its edge. Trees should not be planted in the quad in order to maintain the quad’s openness, nor along the perimeter of the buildings in order to maintain the views from the buildings. Planting along the perimeter will also limit the impact of the parking lots on the east and west sides of the quad. Only shrubs should be planted around the buildings and should be placed in such a manner that they reinforce
the entry points to the buildings. Removing existing trees in front of buildings and in the middle of the quad would be the most appropriate way to restore the views.

Pedestrian Pathways

The pedestrian paths should remain, however, further investigation is needed to determine the historic surfacing of the paths. Concrete should remain as the surfacing material until a determination has been made and then resurfacing should occur.

Roadways and Parking

The roadways that once crossed the quad should not be restored as vehicle roads, but as pedestrian pathways. Their full restoration is not recommended, because the roads themselves were not original to the quad. The pathways should have a dirt and gravel surface identical to the original roads, as determined from historic photographs.

The fire lane to the north of the quad should be of limited access, and should be used primarily as a pedestrian path. It should be surfaced with a historically appropriate material, as determined by historic photographs. The typical landscape surfacing of the period of significance should be used for the fire lane because it defines the north side of the historic campus quad. If modern surfacing is necessary, consult the Secretary of the Interior’s Standards to determine an appropriate surfacing material.

The two existing parking lots can remain in their current locations, because parking is needed to facilitate business at the museum and Stevenson Hall. However, removal of the eastern portion of the west parking lot should occur so that it does not extend past east elevation of Stevenson Hall. New parking lots or additional parking spaces should not be created in order to maintain the historic integrity of the quad’s open space.

Hazardous Materials and Environmentally Sensitive Areas

Any environmentally sensitive areas found on the site should be addressed appropriately, following local and federal standards. In addition, any hazardous materials found on the campus should be dealt with appropriately.

The areas of most concern are Power Plant/Laundry Building and the large mound of contaminated dirt behind Whitmore Hall. Fuel once stored in the coal shed of the Power Plant/Laundry Building has leached into the earth around the structure. The mound of dirt behind Stevenson Hall was removed when the addition to Allen Hall was constructed. The contaminated soil should be removed immediately before contaminates leech back into the earth around the mound.

The proper removal of contaminated soil, building materials, and debris shall commence while working under the guidance of hazardous material removal professionals. Environmental assessment specialist may need to be consulted depending on the situation encountered. The cost for proper removal can be a financial burden. Fundraising and grants may be needed to cover a large portion of the cost.
Accessibility and Safety Considerations
The existing accessibility of the campus satisfies the Americans with Disabilities Act and shall be maintained in its current capacity. Any improvements, modifications, or additions to the pathways, parking lots, and building entrances shall be sympathetic and unobtrusive to the character-defining features of the landscape and buildings.

Ongoing Maintenance
A schedule for monitoring and maintenance of the landscape should be developed to maintain the campus and buildings. The continued up keep will prevent major deterioration from occurring in the future. A calendar for maintenance, either monthly or seasonally, depending on the degree of preservation on the campus, should be developed. Keeping records of the work performed should be a part of the maintenance plan. This ensures that the necessary work has been completed and can help identify problems.

Detailed specifications and guidelines for retention, repair, replacement, or removal of landscape features should be incorporated into the maintenance plan. For plants, pruning methods, replacement techniques, and weed removal procedures should be developed based
upon historical models. Certified horticulturalist and arborists, as well as a historic landscape architect should be consulted in the development of an appropriate plant maintenance regimen.

Recording Treatment and Maintenance

All work performed on the landscape should be recorded in a maintenance and treatment log. To maintain continuity throughout the preservation process, as-built drawings should be produced at the end of each phase. After the completion of the recommended modifications, a complete and final set of as-built drawings of the campus should be produced. Any changes in the landscape should be clearly recorded. Photographic documentation should also be used as a method of recording built improvements.
CHARACTER DEFINING FEATURES

LANDSCAPE

- Quadrangle with axial symmetry focusing on Allen Hall.
- Open spaces between buildings.
- Grade that slopes to the south.
- View of Sitka Sound.
- Focal point at center of quad incorporating converging pedestrian path and a flag pole.
- Expanse of lawn crossed by concrete pedestrian paths.
- Buildings oriented to face the quad.
- Plantings primarily limited to the perimeter of the quad.
- Gate posts at quad’s southwest corner, denoting historic entrance of roadways. Now bearing wooden sign.
- Quad boundaries delineated by buildings and landscape features.

BUILDINGS

Exterior

- Protruding roof brackets.
- Projecting balconies and porches.
- Recessed entries.
- Wood shingle siding at first story level.
- Board and batten siding at second story level.
- Attic vents in hip roofs.
- Porch detailing: wood columns with capital and base detail, low segmental arches, wood railing.
- Wood window trim and decorative hoods
- Buildings painted brown (Sheldon Jackson Brown) with white trim.
- Multi-pane, double-hung, wood sash windows.
- Steeply pitched, asphalt shingled hip and clipped gable roofs.
- Banding and dentils delineating first and second floor.
- Flared wall detail above porch.
- Decorative rafter tails.
- Wood water table.
The following buildings are unique in their designs with Character Defining Features that differ from those of the main quad buildings:

Power Plant/Laundry Building:
- Wood shingle siding.
- Board and batten siding at the second story level.
- Water Table.
- Protruding roof brackets.
- Decorative rafter tails.
- Six-over-six, double-hung, wood windows.
- Parged brick smoke stack.
- Cantilevered gable roof over entry into laundry room.
- Louvered dormers on roof over laundry room.

Ceramics Building:
- Low-pitched gable roof.
- Wood shingle siding, painted brown.
- Recessed entry.

Tillie Paul Manor:
- Clipped gable roof.
- Eave returns.
- Wood shingle siding, painted brown.
- Six-over-one, double-hung, wood sash windows.
- Shed dormers.
- Sun porch on south elevation.
- East side of foundation parged.
- Tall brick chimney with corbelled cap.

Houk House:
- Wood shingle siding, painted brown.
- Wood panel doors.
- Six-over-six, double-hung, wood sash windows.
- Gambrel roof.

Sage Hall:
- Symmetrical façade, broken into bays.
- Standardized window size.
- Aluminum frame windows.
- Art Deco tile detailing around roof parapet.
Interior

Stevenson:
- Staircase And Banister
- Transom Over Main Entrance
- Picture rail.
- Paneled Doors To Closets

Fraser:
- Staircase and banister.

North Pacific Hall:
- Arched entry to hallways.
- Arched openings in partition walls in second floor dorm rooms.
- Staircase and banister.
- Transom over main entrance.
- Remnants of picture rail.
- Paneled doors into closets.

Whitmore Hall:
- Transom over main entrance.
- Staircase and banister.
- Wood baseboards on second floor.
- Door and window trim on second floor.
- Paneled doors into closets

Power Plant/Laundry Building:
- Original bead-board storage cabinet in northeast corner of laundry room.
- Channels in concrete floors for drainage.
- Interior walls sheathed in thin vertical board, ceilings covered with bead board.
- Base of brick chimney at center of structure.
- Cast iron door between boiler room and coal storage shed.
- Simple wood baseboards and window trim.

Tillie Paul Manor:
- Central double-loaded hallway running north to south.
- Rooms arranged in suites with bathrooms between pairs of rooms.
- Built-in cabinetry.
- Walls/ceilings of porches covered in 3 ½” grooved bead board.
- Single panel transoms over doors off central hallway.
- Open second story space with dormer windows and angled corners of ceiling.
Houk House:
- French doors.
- Door hardware with glass knobs.
- Wide wood window and door trim and baseboards.
- Picture rail.
- Open staircase.

Sage Hall:
- Iron and wood banisters of staircases.
- Glazing in doors.
- Decorative grates piercing bottom rail of doors.
- Leffel wheel in generator room.

Ceramics Building:
- Wood shingle siding on interior wall in entry vestibule.
CHARACTER DEFINING FEATURES

- Projecting balconies and porches.
- Recessed entries.
- First-floor wood shingle siding.
- Dormer vents in hipped roof.
- Attic vents.

Protruding roof brackets.
Porch detailing: wood columns with capital and base detail, low segmental arches, wood railing.

Wood window trim and decorative hoods. Buildings painted brown and white.
Board and batten siding at second story level.

Multi-pane, double-hung wood sash Windows.

Steeply pitched hipped roof composition shingles.

Banding and dentils delineating first and covered in second stories.
Flared wall detail above porch.

Decorative rafter tails.

Water table.
ARCHITECTURAL CHARACTER & DESIGN GUIDELINES

Architectural Character: How to Identify the Important Elements on the Sheldon Jackson Campus

The Secretary of the Interior’s Standards for the Treatment of Historic Properties embody two primary goals that reflect the importance of the architectural character of any structure. First is the preservation of historic material and finishes that contribute to the general aesthetic of the structure. Second, and slightly more vague, is the preservation of a building’s distinguishing character. Every historic structure is unique, with its own identity, history, and distinctive character. It is important to specify the definition of character from the view of historic preservation professionals and the Department of the Interior. In the world of preservation, character refers to “all those visual aspects and physical features that comprise the appearance of every historic building.” A good guide for exploring the concept of character is Historic Preservation Brief #17: Architectural Character, distributed by the National Parks Service. To summarize, character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior space and finishes, and the cumulative environment surrounding the structure.

Identifying the Character of Sheldon Jackson Campus Buildings

Outlined here is a three-step process that can be used to identify the materials, features, spaces and structure that contribute to the visual and historic character of the historic buildings on the Sheldon Jackson Campus. This approach treats a building in a manner reflecting the everyday use of all historic structures. The first step involves examining the building from afar to understand its overall setting and architectural context (here, the campus plan of Sheldon Jackson). The second step involves moving closer, to evaluate at “arm’s length” the details involved in the exterior construction of the building. The third step involves going into and through the building to perceive those spaces, rooms and details that comprise the building’s interior visual character, often drastically different from the historic exterior character of the building.

Step 1: The Overall Visual and Aesthetic Setting

To truly understand a historic structure, one must start with an examination of the historic (and present) landscape surrounding the building. On the Sheldon Jackson College campus, this involves a detailed examination of structures as they relate to the campus plan, both historically and today. The major contributors to a building’s overall characteristics are embodied in the structures’ relation to other buildings on the Sheldon Jackson College campus. Simply, a building’s architectural character may be rooted in its relation to other similar structures surrounding it.

This is exemplified in the historic structures of the Sheldon Jackson College campus. The general setting of the Sheldon Jackson College buildings has a drastic affect on the overall feeling of the place. Boxy forms with low-pitched gable roofs and false projections of structural members characterize the style. A general aesthetic is maintained on the campus and thus helps to establish a historic identity.
As previously discussed in the campus history section, Ludlow and Peabody’s design of the Sheldon Jackson College campus is attributed in part to the design of the University of Virginia, built between 1817 and 1826. Designed by Thomas Jefferson, the University of Virginia campus adheres to a strict formal plan. This plan, designed in the Beaux-Arts tradition, possesses a central quadrangle with an anchor building and symmetrical buildings flanking both sides. This is reflected in the original plan of the Sheldon Jackson College campus.

A general approach to looking at the buildings and site will provide a better understanding of their overall character. A strong understanding of the character of the site must be understood to evaluate the character of individual buildings on campus.

Recommendations:

• Site Plan
 a.) The plan is an integral element to the overall visual character of the Sheldon Jackson College campus. It is imperative to maintain the symmetry and axis originally intended for the campus. At all costs, maintain the historic character of the quadrangle by leaving the open space between structures and the open lawn.
 b.) The feeling of the campus stems from a series of transitional spaces. In other words, the character of the campus is made up by the combination of both open and enclosed space. The landscape must support the use of the space between structures while also fulfilling function.
 c.) Always review the impact of landscaping on the sequence from outside to inside. Ask questions that explore how a change in the landscape will affect the use of a particular door or path. Will the addition of a path or parking lot change how people approach a structure? Always keep in mind the movement of people though the space, and how this they will experience the space.
 d.) View Corridors: Always remember the impact that changes can have on the views of and from other structures. Historic views are part of the original character of the campus, and thus should always be maintained.

• Vehicular Traffic
 a.) Always remember that the primary user of any college campus is the pedestrian. Vehicular access must be limited to allow the pedestrian to feel safe and separated from the vehicular traffic.
 b.) It is imperative to keep in mind the historic entrances and series of entrances into a structure. The presence of vehicular traffic has drastically altered the Sheldon Jackson College campus since its period of significance. When possible, emphasis on historic pathways will promote the understanding of the overall campus.

• Campus Buildings
 a.) The shape of the buildings is perhaps the greatest contributing factor to the feel of the Sheldon Jackson College Campus. It is vitally important maintain these forms when working in the historic part of the campus. Notable deviations, such as is seen in Sage Hall, should be embraced as contributing to the variety of architectural experience on the campus. Yet, it is important to note the location of deviations. These are not part of the original campus plan. When construction involves the original campus buildings, adhere to the general forms established in the original plans.
b.) Roof Shape is tightly bound to the overall shape of the structure. Maintain forms like the clipped gable where appropriate.

c.) Openings determine the sequence of entrance into a structure. Always maintain historic porches and openings. These are contributing factors to the architectural character of the buildings and thus should not be altered.

- Campus Plan
 a.) In terms of the setting and campus plan, it is important to simply maintain the historic fabric and integrity of the original campus layout. Do not alter the main quad space or the formal axial plan.

Step 2: Visual Character at Close Range

The quality of the materials and craftsmanship in the buildings is vitally important to the architectural character of the Sheldon Jackson College campus. These materials are important because they demonstrate a sense of craftsmanship and age that is felt on the campus. The use of split shingles as exterior siding is a defining element to many of the structures on campus. Each unique finish material adds a distinct architectural feel, which influences the character of the individual building and campus as a whole. Furthermore, many of the exterior details are a result of the care and craftsmanship initially put into the building of the structures. This high quality of craftsmanship is often referenced as one of the primary differences between modern and historic structures. The craftsmanship must be relished and expressed for all to see.

Recommendations:

a.) Exterior Finishes are as important to the building as the overall shape of the structure. The historic integrity of the structure is closely tied to the maintenance of the shingle work on the campus. The shingles are a character-defining feature of most buildings on campus.

b.) Windows are as important to the building’s appearance as the exterior sheathing. The windows cover roughly half of the exterior façade. It is important that all windows contribute to the feel of the building and thus should not be altered. The original windows constitute the main character of the building.

c.) Projections such as dormers, porches, fire escapes, and staircases add to the historic feel of the structure, as well as adding eye-catching details to the general mass of the building.

d.) Structural members often determine the shape of a structure. The main campus has clipped gables determined by the shape or an interior roof truss. In other places, the shape of the structure is determined by the use of concrete. Always research how the material affects the shape of the building.

e.) Paint and color are important factors in giving a building a certain feel. Sheldon Jackson brown is a signature color on campus and references the historic look of the buildings as well as giving them the rustic overtone that fits them to their environment.

Step 3: Identifying the Character of Interior Spaces, Features and Finishes

The character of the interior space of a structure may be somewhat more difficult to ascertain due to the relatively narrow field of vision. This difficulty is due, at least in part, to the fact that so much of the exterior can be seen at one time and it is possible to grasp the essential character rather quickly on the outside. Perhaps most important to understanding of the historic character of a building is to move through the structure *one room at a time.* Step 3 concerns the
understanding of the interior quality of space, and individual feeling given by each room or the combination of these individual elements.

At Sheldon Jackson College, there is the added difficulty of multiple layers of reconstruction within each building. Few buildings on the campus retain their original floor plans, yet obvious connections to the historic design exist. Careful examination of the sequence of passages through the buildings reveal a link to the historic order within each structure. Most of the buildings have retained the historic entrance and entry hall. Thus, the entrance and sequence of movement from the front door to the lobby, to the central hall or stair, and finally to the individual rooms, is an integral element of the historic structures. In most buildings on the Sheldon Jackson College campus, it is possible to perceive visual links between a series of spaces. Closing off the opening between these spaces would change the character from “open” to “closed.” It is important to remember that the character of a building is not just the exterior finishes and visual characteristics, but also the sequence of entry, which lends to a feeling given by the building.

Recommendations:

a.) The importance of interior features and finishes to the character of the buildings should not be overlooked. Although there is a relatively diverse range of interior finishes now present on the campus, the historic structures possessed a relatively restrained palette. To restore the interior character of the structure, it is important to limit the number of materials used within the buildings. This will establish a uniformity and reserved feeling once present on the Sheldon Jackson College campus.

b.) Remember that all interior spaces have an impact on the general feel of a structure. The historic use of a room may indicate an appropriate modern use. To maintain the historic integrity of the campus, it is important to recognize the historic use of a structure, not mask it.

c.) Interior Spaces are a continuation of the sequence from exterior to interior. It is always important to understand the impact that will occur from a change in the sequence of spaces. Each building was intended to have an experience from public (lobby, classrooms, etc.) to private (dorm rooms, offices, etc.). It is vital to maintain this sequence.

d.) Details, even those as small as window muntins, cannot be replaced without changing the character of the structure. Try, wherever possible to always use the historic hardware and maintain historic details. It is often the details that provide the sense of authenticity in a historic structure.
CERAMICS BUILDING

Style: Rustic

Form: One-story structure with gable roof

Configuration: Rectangular

Ceramics Building, south elevation.

Physical Description:
The Ceramics Buildings is, and always has been a utilitarian structure. Yet, the utility and small size of the structure has proven to be a catalyst for the continued preservation of the building. Perhaps because it is small or perhaps because it has been used continually, the structure is in a relatively good state of repair.

Based on an analysis of the foundation, it appears that the Ceramics Building is a compilation of two structures joined by a veranda. One structure, the original building on the site, has a basement and solid foundation. This basement is made of board formed concrete. The east side of the structure stands on wood 8” x 8” piers, supported by concrete footings that appear to be replacements. The vast difference in the foundations of the structure indicates that the west side is original to the site and that an additional structure was relocated adjacent to the original to double the size of the building. Further evidence substantiates this theory including interior walls, attic spaces, and window differences.

Landscape/Site Description:
The original use of the Ceramics Building, as denoted on the 1952 site plan, was as a storage facility for the adjacent North Pacific and Allen Halls. Tucked in behind the dorm and the auditorium, there appears to be no landscaping intended for the area around the structure. Today, the building is fronted by a gravel utility road and parking. This road extends past the south and west side of the structure and connects with the main passage behind the auditorium. An unattended “grassy” area surrounds the north and east elevations. There is a small out building not physically connected to the ceramics building adjacent to the north façade. This small structure houses the brick kiln for firing pottery. It is a more recent construction. A young evergreen also grows northeast of the structure.
Structural Description:

The structural framing further substantiates the theory that the Ceramics Building was once two separate structures. The west portion of the building is framed with rough cut lumber while the east portion is framed with dimensional 2” x 6” boards. The studs on the west side are 18” on center and covered with lath and plaster. The east walls are framed with thicker studs and placed 24” on center. Both walls are platform framed with a flat top plate. Here they are described in more detail:

East Side—The floor joist system, made up by rough cut 2” x 10” boards, rests on supporting girders that run the length of the east side. The rafters run north to south and establish a rudimentary structural grid. The main girders run east to west and are positioned on the edges and in the center to support the load of the wooden floor joists and floor load. Wooden piers that sit on concrete footings support these girders. These supports are positioned roughly every eight feet. The stud walls are platform framed with studs every 24” on center. A horizontal top plate supports large 2” x 8” rough cut rafters. There is currently no ridge beam, but evidence points to the use of one at one point. There is also evidence of the use of some square nails.

West Side—The size of the floor joists could not be determined, but it is known that they run north to south spanning between the concrete walls. The basement has one interior wall to support the center load of the floor joists. The basement walls carry the exterior load. The wall is platform framed with 2” x 6” studs positioned 18” on center. The 2” x 4” rafters sit on a flat top plate. The rafters are supported by a ridge beam that runs the length of the west side. Roof sheathing has been replaced with the addition of the new roof.

A general description of the condition of the attic is an integral element to the understanding of the overall building. One key feature stands out when viewing the attic: the shingled “exterior” wall separating the east and west sides of the structure. This seems to be further proof that the east side of the Ceramics Building was at one time a separate structure. This “exterior” wall is clad in shingles and painted “Sheldon Jackson Brown,” indicating its originality to the campus. This wall has a hole in it to provide access to the east attic from the west side. Although the roof pitch is the same on both sides, this two may have been changed with the addition of the second building.

In the east side of the structure this is no existing ridge beam. There is however a board of the same dimensions as the rafters that sits in the attic unused. This board has holes every 24-inches on center (the same spacing as the rafters), indicating it was at one time the ridge beam for the east side. This may have been removed to change the slope of the roof to match the existing structure. The east side of the roof is framed with rough cut 2” x 6” lumber used as rafters. The original sheathing has been replaced with the addition of a new asphalt shingle roof on both sides.

The west side roof uses 2” x 4” dimensional rafters and has a 2” x 4”-ridge beam. It has had new sheathing added during the reconstruction of the roof.

Exterior Elements:

Walls:

The exterior shingles appear to be original to the structure. The shingles are split wood pieces ranging in size up to roughly 9-inches wide. The heights are consistent.
Condition and Treatment:
The paint is peeling on all exterior surfaces. The shingle siding is in fair condition, with some missing, cracked and curling shingles. All surfaces should be properly prepared and repainted. Missing or deteriorated shingles should be replaced in kind.

Roof:
The distinctive change in the building is the reconstruction of the roof. By adding asphalt shingles, the original feel of the structure was drastically altered. Wooden shingles would have been the most probable original roofing material, and would make a dramatic difference to the overall character of the building.

Condition and Treatment:
The roof appears to be new and is in very good condition. Little work needs to be done, though as always, it should be monitored for leaks or other damage.

Foundation:
As discussed above, the foundation provides a vast basis for the history of the structure. The foundation is made of board-formed concrete on west side and concrete footings supporting wooden piers on the east side. The west side has a substantial basement now used for storage of supplies and materials for the ceramics class. The basement appears to have had access through an exterior door that at one time opened onto a front porch or veranda. This door now enters into the structure. The concrete is eight inches thick and has small slit windows to provide minimal lighting to the basement area.

Condition and Treatment:
The foundation appears to be in good condition. It should be monitored for racks and water infiltration problems.

Windows:
The windows on the west elevation are original. They exist today as they did in the 1935 photograph. They are three-pane wood windows hinged at the bottom. Most windows in the east side of the building appear to be original, though some have been replaced with large fixed pain windows. The windows on the east elevation often do not to fit into the wall where the window is placed. The few window frames that protrude through the interior wall exemplify this. These appear to have been moved from other locations on the campus. They consist of six-over-one, double hung, wood sash windows.

Condition and Treatment:
Most windows are in good to fair condition. All windows should be refurbished for safe and smooth operation. A good description for accomplishing these repairs can be found in the National Parks Service’s Preservation Brief Number Nine. Missing panes in the basement windows should be replaced.

Doors:
The doors appear to be original to the addition of the second building. These doors, moved with the addition of the east side, are original features. They are five panel hollow core wood doors. The windows appear to be replacements for what would have been original lights. The hardware is also original on the exterior, but appears to have been replaced on the interior.

Condition and Treatment:

The doors are in good condition. They should be maintained in working order and any original hardware should be retained.

Interior Elements:

Walls:

There appear to be no original interior partitions. The walls have curious complexities that lend to the history of the structure. In the West side of the structure, original lath and plaster still exist. This is an interesting complexity because of the relative rarity of the technique in Alaska. This was a common method adopted in the lower United States and could have easily been requested by the original architects. Numerous modifications have taken place on the interior walls. This is a result of the continued use of the building throughout the years. Concrete backer board has been added to the interior of much of the East side of the building, notably around the machinery that has been brought into the shop. This has been covered with a rough coat of plaster and a textured paint.

One curious interior siding is the use of shingling in the central area of the structure. The shingles are the same as the exterior but have been painted white at some point through the years. The interior shingles, having the same size and style as the exterior brown shingles, is further indication of the adaptive quality of the building. The shingling is on the “exterior” wall of the west side of the building. Now, with the addition of the east side, this is now an interior wall. The door to the basement is in-plane with this “exterior” wall, indicating that there may have been an attached porch at one point to work as entrance for both basement and main building. With the addition of the East side, the porch or veranda was closed off and made into interior space, and the front doors where moved to the current location.

Ceiling:

As previously mentioned, the use of lath and plaster is a rare element in Alaska. Yet the west side of the building still maintains the original lath and plaster, in good condition. The east side of the building has been sheathed in concrete board and/or gypsum board. This has been covered with a thin layer of plaster and painted with a textured white paint. The interior is fairly well maintained because of its continued use as a studio space.

Floors:

The most noticeable interior adaptation is the use of concrete flooring. Presumably, this was done when the building shifted function from a storage facility to a studio space. The floor appears to be concrete backer-board fastened to the original substrate. This concrete board is then covered with a thin layer of poured concrete to provide a durable utilitarian floor. This same system was used on both the east and west sides of the building.

Modifications:
The vast majority of the original exterior features have gone unchanged. The original shingles appear to be intact and the overall shape of the structure has not been changed since the 1950 aerial photograph. The original casement windows remain intact and are still a significant contributing factor to the integrity of the structure.

Modern modifications have been made to accommodate the differing functions and needs of the studio space, however. New kilns were recently added to a small additional room on the east end. During this most recent rehabilitation, new lighting and interior finishes were added to the room at the east end. This appears to have been needed after the purchase/donation of two new automatic kilns. Yet, it is these modifications that have promoted the further use of the structure and subsequent maintenance. The structure is in comparatively good condition to some of the buildings on the Sheldon Jackson Campus. This is a result of the continued use and adaptability of the structure.

The primary modification still to be made is the addition of a gutter to the roof. Currently, there is no drainage system. This is resulting in water damage to some of the walls, predominately the projecting portion of the southeast end. The continued use of the building has been a great catalyst to the preservation of the structure. This structure should continue to be used as preserved for further use as a utilitarian space.

Date Surveyed: 4/30/04
FRASER AND STEVENSON HALLS

Style: Craftsman

Form: two-story structure with combination hip and clipped gable roof.

Configuration: T-shaped

Physical Description:
Fraser and Stevenson Halls were constructed in 1910 and were designed by Ludlow and Peabody. The buildings face each other across the open quadrangle and are almost mirror images of each other. The footprint of each building measures approximately 73’x 38’ with a 20’ wide bay at the north end of the building that projects 9’ from the west side and 2’ from the east side. Each building is a two-story structure with a unique roof form. The T-shaped plan allows for a ridge running from north to south, which is hipped at the south end and intersects with an ridge running east to west at the north end. The east/west axis terminates in clipped gables above the front and rear projections. The roof is covered with composition shingles.

The main entrance consists of a porch recessed below the projection at the northern end of the building. This entrance is on the east elevation of Stevenson Hall and on the west elevation of Fraser Hall. The porch on Fraser Hall has a concrete floor, while on Stevenson Hall, a wood platform constructed with 2”x 6” decking has been built over the concrete. Square wood columns support the projecting second story above.

Fraser and Stevenson Halls share the character defining features of the other Ludlow and Peabody buildings on campus. They are sided with wood shingles, painted brown, on the first story up to the bottom of the second story windows. From this level upward the siding is vertical board and batten, currently painted white. The first story has nine-over-nine double hung wood sash windows, while the second story has six-over-six double hung wood sash windows. The roof has wide overhangs with exposed rafters. The clipped gables of the roof are supported by large wooden eave brackets.

Fraser Hall was originally designed as a dormitory for the younger boys, while Stevenson Hall was a dormitory for the younger girls. The second floor contained two large open dorm rooms that accommodated twenty-one beds each. The first floor contained common areas.
including a reception hall, sitting room, reading room and playroom. The interiors of both buildings have been remodeled to accommodate changes in use. The large open rooms in both buildings have been divided into smaller rooms now situated along double loaded corridors. In 1990, the interior of Fraser Hall was remodeled to accommodate classrooms, faculty offices, the copy center and computer lab. The second floor of Stevenson Hall is now used as staff housing, while the first floor houses administrative offices. Nearly all interior historic fabric has been removed.

Landscape/ Site Description:

Stevenson and Fraser Halls are part of the formal arrangement of Ludlow and Peabody buildings facing the open central quadrangle. Stevenson Hall is located at the west end of the quad and Fraser Hall is located at the east end. The topography is level around both buildings.

Near Fraser Hall, a gravel fire lane parallels the building to the north and a service road curves around from the south and east and leads to Rasmuson and Sweetland Halls. Recent improvements to this road have raised the grade level at the building’s east end. The vegetation around Fraser Hall consists of randomly placed small shrubs and recently planted small trees to the south. Additional features include non-historic metal light posts near the road.

Jeff Davis Street is located close to Stevenson Hall’s west elevation and a gravel parking lot that can accommodate approximately a dozen cars is located immediately to the south. Concrete walkways lead to the north and east entrances of the building. Two large trees are located near the porch at the north end of the east elevation. There are several plantings around the building, mostly consisting of small trees and shrubs.

Condition and Recommendations:

There are two large trees located at the southeast corner of Stevenson Hall’s front porch that have become invasive. Their root structures are damaging the porch foundation and branches overhanging the roof are contributing to debris buildup on the roof and in the gutters. Small trees, including one with a trunk 2” diameter, are growing from the debris below this tree canopy. The two large trees should be removed and the roof and gutters should be cleaned.

Trees between the parking lot and Stevenson Hall are not to scale with the original intent of the landscape plan. Smaller trees or shrubs that do not interfere with sight lines should replace existing trees.

There was some evidence of ponding around both buildings on rainy days. Measures should be taken to ensure the sites are well drained and that downspouts effectively carry water away from the buildings.

Structural Description:

Fraser and Stevenson Halls are wood framed buildings on board-formed, poured concrete foundations. The first story is supported by 1-7/8” x 11” joists, 16” on center, which in turn are supported by the concrete foundation walls at the outer edge and by a 5-1/2” x 11” beam at the center of the building. The center beam is supported by 12”x 12” concrete piers spaced 9’ on center. In the attic, 1-7/8”x7-1/2” rafters are placed 20” on center, with 1-7/8”x 7-1/2” collar ties on every other rafter. The roof pitch is 7/12. Skip sheathing, measuring 1”x 4” rests on the rafters, with wood shingle roofing visible through the gaps.
The most notable framing feature is the large wooden truss at the south end of the attic. This truss, running on a north/south axis, is constructed of 8”x 8” wood members, held in place by metal fasteners. The truss is approximately 28’ long and does not support the roof, but rather supports the ceiling below. This allowed the ceiling to cross the wide span over the original, large, 21 bed dorm room without columns to obstruct the open space.

Condition and Recommendations:

Floors throughout both buildings are sloped due to uneven settlement. In the crawl spaces below the buildings there is evidence of past attempts to correct these problems. There are a number of beams and piers that have been added, including some wood piers set directly on the ground. Floor support should be redone to properly support the floor and eliminate direct contact between the wood supports and the soil.

In the crawlspace under Stevenson Hall, one of the concrete piers toward the south end of the building is falling over. Temporary supports have been added that seem inadequate. A structural engineer should be consulted to evaluate floor support in both buildings.
The crawlspace under Fraser Hall is full of debris, including old lumber and pieces of pipe, which should be removed. There is evidence of moisture in the crawlspace, especially at the south end; the source of the moisture was not apparent. Based on cracking in the soil, it appears there was even more moisture present at one time and it is possible that the problem has been corrected but the area has not fully dried. This area should be monitored regularly to determine if there is an active moisture source.

Exterior Elements:

Walls:

The exterior walls are clad with painted cedar shingles up to the level of the second story windowsills. An 8” wide horizontal board circles the building at this level. Above this horizontal element, vertical board and batten siding, spaced 10” between battens, finishes the wall treatment to the frieze. The shingles are painted brown and the board and batten siding is painted white.

Condition and Recommendations:

The paint is peeling on all exterior surfaces. The board and batten siding appears to be in good condition, but the shingle siding is only fair with some missing, cracked, and curling shingles. Siding on the south and east elevations shows more wear.

Sources of moisture, such as leaky gutters and downspouts, should be repaired. Missing and damaged shingles should be replaced in kind. All surfaces should be properly prepared through careful scraping and priming, and then repainted.

Roof:

The roofs are a combination of hip and clipped gable configurations covered with composition asphalt shingles. They have a 7/12 pitch.

Condition and Recommendations:

The roofs are in good condition. There are a couple of missing shingles that should be replaced on both buildings. Moss is growing in several locations and should be removed with care, particularly beneath the trees on the east elevation of Stevenson Hall. The roofs were
originally covered with wood shingles, which are still present and visible from the attic, but are currently covered with composition shingles. While the preferred method of covering the roof is wood shingles, the composition shingles are a satisfactory method of protecting the building. The restoration of the wood shingle roof is suggested only if the funds are available to replace and maintain the roof.

Foundation:**

The board-formed, poured concrete foundation is 24” high around the both buildings’ perimeter, with the exception of the east elevation of Fraser Hall where recent regrading has raised the ground level. Along the north end of the east wall of Fraser Hall, only 6” of the concrete foundation wall is exposed. Wood light wells have been constructed around crawlspace vents and windows that are now below grade along the east wall.

Condition and Recommendations:

The foundations are in good condition, with the exception of the foundation of the porch on the east elevation of Stevenson Hall. Trees that have undermined the porch foundation should be removed and the foundation should be repaired in a historically appropriate manner.

Light wells that have been constructed on the east wall of Fraser Hall need to be rebuilt. Measures should be taken to ensure proper drainage so these wells do not become avenues for moisture entering the crawlspace.

The crawlspace below Stevenson Hall is very hot and humid due to a steam leak in the southwest corner. Minor leaks at the joints of the galvanized plumbing supply pipes appear in various locations in the crawlspace. The water supply leaks are causing minor dampness on the ground directly below the these pipes. While the need for immediate repair is not urgent, the leaks are a sign that the pipes are nearing the end of their useful life and total replacement of the water supply piping should be done in the near future. The steam leak should be repaired as soon as possible, as it is causing excessive moisture in the crawlspace.

Windows:
On the first story, the windows are nine-over-nine double hung wood sash. On the second story, the windows are six-over-six double hung wood sash, with the exception of two casement windows on the south elevation of each building and one fixed window on the north elevation of each building. The fixed windows replaced original casement windows. The casements originally provided access to the second story balconies that have been removed. There are narrow, horizontal, three light windows in the foundation providing light to the crawlspace.

Condition and Recommendations:

The windows are in good to fair condition. Most have broken or heavily painted sash cords, window locks that are missing or do not line up, and loose or missing glazing putty. Some have been repaired with metal L-brackets at the corners of the sashes. Care should be taken to stabilize and preserve the many original windows of the building. Putty and glazing should be replaced using historically appropriate materials and methods, and sash cords and locks should be repaired as funding is available. All windows should be reworked for safe and smooth operation.

The casement windows in the southeast bedroom on the second floor of Fraser Hall are in poor condition. Repairs have been made to the sashes using rails that do not have a molded edge and muntins have been removed. These windows should be repaired using methods that restore the historic character of the window.

A number of the windowsills are in poor condition as they are showing paint deterioration and/or the presence of rot, particularly on the south and east elevations of both buildings. The sills should be repaired or replaced in kind to match the historic fabric and context of the building.

Windows in the foundation of Fraser Hall are loose or missing and in Stevenson Hall many are boarded up or have broken or missing panes and are covered with wire mesh screening. Broken panes should be replaced and loose or missing sashes should be repaired.

Good guidelines for accomplishing all these repairs can be found in the National Parks Service’s Preservation Brief Number Nine.

Doors:

The main entry door on the west elevation of Fraser Hall is a flush solid core wood door with one light in the upper portion of the door. There are two flush wood doors on the south elevation, one on the second story providing access to the fire escape and one on the first story leading to the wheelchair access ramp.

The main entry door on the east elevation of Stevenson Hall is a flush metal door with an eight-pane transom above. There is a flush metal door on the first story of the south elevation leading to the gravel parking lot, a flush metal door on the first story of the east elevation for the access ramp, and a modern flush wood door with three small panes in it on the north facade of the east addition. None of the exterior doors that remain are original.
Condition and Recommendations:
The exterior doors on both buildings are in good condition. Doors that are similar in character to the original should be installed when funds are available. Historic Photos and plans can provide information for appropriate styles.

Unique features/details:
Decorative features include the wood brackets supporting the clipped gable roofs. These brackets have an approximately 6”x 6” square top member that is chamfered at the end and projects through a notch in the verge board. The top member is supported by a curved brace set at a 45° angle.

Condition and Recommendations:
The exterior roof brackets are badly rotted, particularly the top member of each bracket. On the east elevation, the ends of the brackets have completely rotted away. The badly rotted sections should be removed and replaced with members sized and shaped to match the original. Some of the brackets with minor deterioration may be repairable with epoxy fillers. Rot is occurring from the top down, often not noticeable until it has gone too far. All brackets should be examined and, where possible, repairs made before total replacement is necessary.
Interior Finishes:

Walls:
The interior walls are covered with textured sheetrock and are painted. The interior doors are flush wood pre-hung door units with narrow trim. In Fraser Hall, windows have either narrow, non-historic wood trim or no trim at all. One faculty office in Fraser Hall, Room 207, retains its original 4-1/2” wide wood window trim. In Stevenson Hall, some rooms have picture moldings, most have wide wood trim on the windows, and some have wood baseboards.

Condition and Recommendations:
Walls are in good condition. Most have a textured finish, which is non-historic and has not been applied carefully. As funding permits, walls should be refinished with a smooth surface. Trim matching the original trim should be reinstalled throughout both buildings. The trim still existing in the lobby of Stevenson Hall should be used as a guide.
Ceiling:

Ceilings are finished with either textured sheetrock or 12”x12” acoustical tiles. All of the rooms retain their original ceiling height with the exception of the women’s rest room in Fraser Hall and one office in Stevenson Hall where the ceiling level is dropped below the tops of the windows.

Condition and Recommendations:

The ceilings are in good condition, but are not original. If funds are available, non-historic materials should be removed. If original plaster is found underneath, this should be restored. If not, materials could be installed to replicate the smooth finish of the original plaster ceilings.

Floor:

The floors are finished with carpet with the exception of the rest rooms, which have vinyl floors. Vinyl cove base has been installed throughout the building. The only place original flooring and baseboards are visible is in the utility closet below the stairs in each building. The utility closets have 2-1/4” T&G flooring and a 5” baseboard with a molded top.
Floor coverings are in good condition. There are noticeable slopes to the floor, which are addressed in the structural section above.

Unique features/details:

Few of the original interior finishes and details remain intact in either building. There is a five panel door being stored in the attic of Fraser Hall that may have been original to the building; a similar five panel door serves as the door to the utility closet in Stevenson Hall. Part of the original stair railing, including the newel post, remains on the Stevenson Hall stairway.

Condition and Recommendations:

Stair detailing in Stevenson Hall should be used as a model to restore the staircase in Fraser Hall. The five panel doors found in both buildings provide an example of the type of doors that should be used to replace interior doors throughout both buildings.
Modifications:

Exterior:

Original plans and historic photographs indicate that there were small balconies at the second story level with wall mounted ladders serving as fire escapes on both Fraser Hall and Stevenson Hall, one the north and south walls of each building. These were removed in the 1950s but evidence of them can still be seen at the casement windows on the south wall and at the fixed window on the north wall. The casements are original and were intended to provide access to the fire escapes. The fixed window replaced earlier casements.

Historically the roof was clad with cedar shingles but it is now covered with composition shingles. Wood shingles are visible through the skip sheathing in the attic. The cedar shingles on the exterior walls were originally stained rather than painted.

Fraser Hall’s original footprint remains intact. There was an addition to the east elevation that was visible in aerial photos from the 1950s but was later removed. At the second story level of the south elevation, a wood door and metal fire escape were added to comply with current egress standards. A door leading to a ramp on the first story of the south elevation was added to allow access for people with disabilities. On Stevenson Hall, a door and ramp were added on the west elevation. The designs of the ramps and fire escape are not compatible with the character of the building and appear inadequate for their intended functions.
A door and small covered porch have been added to the south elevation of Stevenson Hall. A north approach to the front porch has been removed. This north approach remains intact on Fraser Hall, however, providing an example of the original appearance.

Alterations have been made to the front porches of both buildings. On Stevenson Hall, a platform made of 2”x6” wood boards has been installed over the original concrete porch. Columns have been repaired with a visible splice approximately 18” above the base of the columns on Stevenson Hall. On Fraser Hall, the columns were replaced with square wood columns that lack the beveled corner detail visible on the columns on Stevenson Hall. Railings on both buildings have been modified to meet current code requirements. All original exterior doors have been replaced. On Fraser Hall, the front entry door is no longer centered between the two flanking windows.

There was originally a panel detail located below each window on the first story. The plans show the trim on the side of the windows extending down to the top of the water table. The area below the window was shown as a wood panel trimmed with molding to create a
recessed panel effect. Early photos show that this detail was installed on all first story windows but it now remains only below the windows within the recessed front porches.

Interior:

The interior spaces have been substantially altered and retain little of their historic character. Virtually all interior detailing is gone and room configurations have been changed to accommodate the changing functions of the building.

Date Surveyed: 4/26/04
HOUK HOUSE

Style: Dutch Colonial Revival

Form: Two-story structure with a gambrel roof

Configuration: Rectangular

Physical Description:
Houk House is a two-story Dutch Colonial Revival residential structure with a rectangular plan and poured concrete foundation. The house has a gambrel roof covered with composition shingles with large shed dormers extending the full length of the front and rear facades. The roof is slightly flared at the eaves and features classical eave returns.

A centrally located entry projects from the east elevation and features a six-panel door flanked by sidelights and topped with a semi-circular fan light. Six-over-one wood sash double-hung windows complete the symmetrical three bay formal arrangement of the facade. The house is sided with wood shingles, currently painted brown.

A one-story addition extends north from the northwest corner of the house. The addition is sided with matching brown painted shingles and also features six-over-one wood sash double-hung windows. The addition has a hipped roof with a very low pitch, making it appear flat when viewed from the road. The roof on the addition is covered with composition rolled roofing.

In plan, the Houk House includes a living room, dining room, kitchen, bathroom and two bedrooms on the first floor. The second floor has four bedrooms and a bathroom. The single story addition contains two apartments which were not accessible during the assessment.
Landscape/ Site Description:

Houk House is located on the west side of Jeff Davis Street, across from the main campus. It is just southwest of Stevenson Hall and directly south of Tillie Paul Manor. The house is sited close to the road, with the front steps nearly meeting the sidewalk that parallels the road. As the road slopes to the south toward Lincoln Street, the site maintains a level grade. A low stone wall accommodates the difference in elevation along the southern edge of the property. Non-historic wood steps access the front and rear entries, and deteriorated concrete walks lead to the rear entry and to the apartment entrances.

A large shrub is located between the house and the road and a medium sized deciduous tree stands in the north side yard. Non-historic light fixtures are located near each door.

Condition and Treatment

The entrance steps to the apartments in the addition have no landings as required by code. There are only concrete steps leading to the doors and these are significantly slanted due to settling. The concrete sidewalks are deteriorated, particularly those leading to secondary entrances. The stairs leading to the front and rear of the house are stable and functional but not compatible with the historic character of the house.

Code approved concrete steps and landings should be installed to prevent tripping hazards. The concrete walkways should be replaced as funding permits. The stairs at the front and rear of the house are a lower priority as they are not a safety hazard, but as funding permits these should be replaced with historically appropriate stairs. Historic photographs may provide clues for the proper appearance.
Structural Description:

Houk House sits on a board formed concrete foundation and is platform framed. The attic was not accessible during this assessment. There is a poured concrete foundation with a partial basement. Floor joists measure 1-3/4” x 7-1/2” and are placed 16” on center.

Condition and Treatment

Houk House is in good condition structurally.

Exterior Elements:

Walls:

The exterior walls are clad with cedar wood shingles, painted brown. Shingles extend from the foundation level to the frieze. There is no water table at the transition from the foundation to the siding. Two small rectangular openings on the south elevation outside the kitchen have been boarded over. They are typical of vents used to provide cold storage in early kitchen cabinets.

![Cold storage vents on the south elevation.](image)

Condition and Treatment

The paint is peeling on all exterior surfaces, especially on the north elevation. The shingle siding is in fair condition, with some missing, cracked and curling shingles. Siding on the south elevation shows the most wear. There is a 1’ x 3’ section of missing siding on the northeast corner of the addition.

All surfaces should be properly prepared and repainted. Missing or deteriorated shingles should be replaced in kind.
Roof:
 The roof of Houk House is covered with composition shingles. The addition is covered with composition rolled roofing.

Condition and Treatment
 The roof appears to be new and is in very good condition. Gutters and downspouts also appear to be new; however, stains indicate they have been overflowing and may need to be cleaned.

Foundation:
 The foundation is made of board formed poured concrete, varying from 8” to 18” high around the perimeter of the building.

Condition and Treatment
 The foundation appears to be in good condition. There is a moisture problem in the basement due to a plumbing leak (see below). Once that is repaired the basement should be monitored to determine if there are additional sources of moisture.

Windows:
 The windows are six-over-one double-hung windows in wood sashes. The windows on the east (front) elevation are symmetrically arranged, with a pair of windows to each side of the entry, single windows centered directly above these pairs and a pair of smaller windows above the entry. There is a semi circular window at the attic level on the south elevation and a Palladian window at the attic level on the north elevation. Narrow three pane wood sash windows, at least two per elevation, provide light to the basement and crawlspace.

Condition and Treatment
 Most windows are in good to fair condition. Several have broken or heavily painted sash cords, window locks that are missing or do not line up and loose or missing glazing putty. Some have been repaired with metal L-brackets at the corners of the sashes. The windows in the northeast bedroom on the second floor are in the worst condition. The bottom rail of one window in that room has completely separated from the stiles. This should be repaired immediately as the glass is now loose. Basement windows along the south elevation are missing panes and are boarded up.

 The highest priority for repair is the windows in the northeast second floor bedroom. All windows should be refurbished for safe and smooth operation. A good description for accomplishing these repairs can be found in the National Parks Service’s Preservation Brief Number Nine. Missing panes in the basement windows should be replaced.

Doors:
 The doors on the main house are five panel wood doors. The rear doors appear to be original. The addition has flush solid core wood doors. There is a five-panel wood door at the second story level of the north elevation that has been nailed shut and has no balcony. Patched shingles above this door indicate there was once a flat or shed roof above it.
Condition and Treatment

The doors are in good condition. Doors on the addition should be replaced with doors similar to those found on the house.

Unique features/details:

Decorative features include the classical eave returns on the roof and wide frieze boards and crown molding on both the house and the addition.

Interior Finishes:

Note: The rooms on the south side of the second floor and the apartments in the north addition were occupied and not inspected. The attic was locked and not inspected.

Walls:

The interior walls of the Houk House are made of lath and plaster. The original 4-1/2” door and window trim is intact throughout the house with the exception of the kitchen. Trim around the doors and windows is 4½” wide wood boards with molded inner and outer edges. 5” baseboards are finished with quarter round pieces and a 2” picture rail is located in the first floor rooms.

Condition and Treatment

Walls are in good condition, however wiring has been installed with no sensitivity to the historic character of the house. There is surface mounted wiring throughout. Non-historic light fixtures have also been installed throughout the house, including fluorescent ceiling fixtures. Wiring should be concealed within the walls where possible and light fixtures should be replaced with historically appropriate fixtures.
Ceiling:
 Ceilings throughout the house are plastered with a smooth finish with the exception of the kitchen ceiling, which has been lowered with acoustical ceiling tiles.

Condition and Treatment
 The ceilings are in good condition. Surface mounted wiring is present as noted above. The kitchen ceiling has been lowered with acoustical ceiling tiles. These should be removed and the original plaster finish restored.

Floors:
 The floors are covered with carpet with the exception of the bathrooms and kitchen, which have vinyl tile floors. The front entry has a concrete floor.

Condition and Treatment
 The floors are in good condition but the floor coverings are not historically appropriate. As funding permits, vinyl floors should be replaced with either ceramic tile or linoleum. Wood floors are likely to exist below the carpet. Carpet should be removed and the flooring evaluated for possible repair and refinishing.

Doors:
 A single fifteen-pane door is located between the entry vestibule and the living room. A pair of fifteen pane french doors join the living and dining rooms. The remaining interior doors are five panel wood doors. Modern locksets have been installed on the bedroom doors. Original hardware, including glass doorknobs, remain on secondary doors, such as those leading from bedrooms directly to the bathrooms. A simple vertical panel door leading to the furnace room in the basement is constructed with mortise and tenon joinery and has a rim lock. These details indicate that it is older than the house, possibly recycled from an earlier building.

Condition and Treatment
 The doors are in good condition. The flush door between the kitchen and dining room should be replaced with a five panel wood door similar to those throughout the house. Non-historic hardware should be replaced, using examples found on secondary doors throughout the house.

Unique features/ details:
 The first floor bathroom retains its original sink and clawfoot bathtub. The stairway appears to be original. It is an open stairway located in the central hall and features newel posts on the first and second floors and railings with square balusters.
Newel posts

Condition and Treatment

The newel post on the first floor is missing a band of molding at the top, but the second floor newel post remains intact and provides an example for repair of the lower post. The location for the molding is visible on the lower post as a ridge of paint build up. Molding should be located or reproduced to match the profile of that found on the post on the second floor. The stair elements are now painted. Care should be taken in selecting the wood for the replacement molding so the wood will match the existing if the railing is ever restored to a natural finish.

Plumbing:

There is a black plastic water supply main, located in the basement that is sweating heavily, dripping on the floor and staining the joists it passes through. The pipe should be evaluated to determine if it is the type of polybutelene pipe currently involved in a number of lawsuits due to product failure.

There are serious moisture problems in the basement. The most obvious cause for this is a drainpipe that is completely disconnected, causing water to drain on to the basement floor. This should be repaired immediately. Once that is repaired the basement should be monitored to determine if there are other sources for moisture.
Disconnected drainpipe in the basement, and associated water damage

Modifications:

Exterior:

The exterior of the house retains most of its original features. The stairs leading to the front and rear of the house are relatively new and not compatible with the historic character of the house. Evidence suggests that the front entry vestibule may have been a porch that was enclosed, based on the concrete floor in this area. The single story extension to the north was added in two stages, the first part in 1930 and the second in 1951. It is not known what purpose the door at the second story level on the north elevation served. There appears to have been a landing with a roof associated with this door at one time. Electrical upgrades such as electrical panels and extensive metal conduit on the north elevation detract from the historic character of the house.

Interior:

In plan, the Houk House remains unchanged and the majority of the interior historic fabric remains intact. The original fixtures in the second floor bathroom have been replaced with modern fixtures including a combination tub and shower. None of the historic fabric remains in the kitchen. Lighting throughout is non-historic and includes fluorescent lighting in many rooms. Surface mounted wiring has been added extensively.

Date Surveyed: 4/30/04
HOUK HOUSE ELEVATIONS

East Elevation

North Elevation

West Elevation

South Elevation
NORTH PACIFIC HALL

Style: Craftsman

Form: Two-story structure with hipped roof

Configuration: Rectangular

View of North Pacific Hall from the southeast.

Physical Description:
Whitmore Hall is one of the Ludlow and Peabody campus buildings built in the Craftsman style. The building is rectangular in plan and two stories high, with a small addition on the north elevation. The dormitory has a hipped roof with dormer vents at the west and east ends and a projecting clipped-gable roof over the entry on the south elevation. The exterior is covered with cedar shingle siding on the first story, which changes to vertical board and batten siding at the base of the second story windows. The board-formed concrete foundation is painted brown, as is the shingle siding.

Landscape:
North Pacific Hall is located on the north side of the main quad. It sits on a level grade, but faces a downhill slope that leads south to the water of Sitka Sound. Allen Hall sits to the east, the ceramics building sits to the north, and Stevenson Hall is located southwest of the dormitory. The administration building is situated in the quad to the south of North Pacific Hall. There are three large conifer trees planted in close proximity to the south elevation. There are several shrubs in the flowerbed at the southern elevation, as well as a rectangular wood sign. A
concrete walkway runs the length of the southern elevation and continues to ring the boundary of the quad. The east and west elevations are bordered by concrete walkways and grass. Additionally, the east elevation is fitted with a handicapped-access ramp. A bench made of a split log sits at the southeast corner of the building. The north elevation is bordered by a gravel road. A small gravel area with parking for four to five cars is located at the northeast corner of the building.

Condition and Treatment

The landscape is in good condition, though it has been modified over the years for better access (pedestrian and vehicular), and a more lushly landscaped appearance.

The site should be assessed for positive drainage away from the building. Re-grading of the site may need to be performed to assure that water does not settle near the building. The landscape should maintain the open grass quad to the south. The three evergreens at the south elevation should be removed to open the building’s view shed and restore the original appearance of the landscape. The landscape to the east and west should retain grass and trees. The gravel road and parking lot located to the north should be removed to maintain the historic appearance of the historic campus plan.

North Pacific Hall in an undated photograph, showing original appearance.

Structure:

The wood platform-framed dormitory has a simple heavy-timber truss system located in the west side of the attic. Rafters, measuring 2”x 6” are spaced 16” to 21” on center and do not extend past the top plate of the 2” x 6” stud platform walls. Located at every other rafter is a cord that measures 2” x 6”. At the joint of the hipped roof and the projecting front-gable roof are laminated 2” x 9” girders. The two identical trusses at the west end of the building are approximately 36 feet long and rest on the west wall and a 9” x 9” column at the east end of the cord. The top of the truss is not connected to the roof. In the crawlspace below the building, there is diagonal sheathing over the first floor joists, which are spaced 16” on center. They rest
on two sill plates on a board-formed poured concrete foundation wall. Concrete piers spaced at regular intervals support the structure. The crawl space has a large quantity of construction debris. The basement at the center section of the building is made of board-formed concrete walls and a poured concrete floor.

Unique truss at the west end of the attic.

Condition and Treatment
The structure of North Pacific Hall is in good condition. The two trusses in the west end of the attic are not connected to the roof in any way. In the basement, where the northwest portion of the wall was removed, two wood columns have been installed in place of the original wall. These columns are resting on concrete footings and are shimmed at the top. In the basement, the floor joists that bear on the concrete fireplace in the center of the basement are a structural issue. A portion of the concrete has been removed at the top of the fireplace, leaving the joists unsupported by the fireplace structure. The concrete barrel vault of the fireplace is supported by a wooden post and beam structure. The end column of this structure is missing.

The two wooden trusses located in the west side of the attic should be secured to the rafters. Though the trusses are not meant to support the roof, but the ceiling of the second story, they should be attached to the roof for added stability. The wooden beam and two wooden columns that have replaced the partition wall in the basement should be reconstructed in a more permanent way. The wood columns should be placed on footings that are connected to the subfloor. They should also be connected to the beam above. The beam, itself, should be connected to the foundation wall and floor joists. The wood column that is missing from the structural system supporting the concrete barrel vault of the basement fireplace should be replaced and the joists resting on the fireplace should be connected to the wall. Leaks in the steam pipes in the crawl space and leaks in the sewage pipe in the basement should be repaired.

The two wood trusses in the attic should remain because they are a character-defining feature of the structure. The roof structure and concrete foundation should be maintained and any replacement should be done in-kind, with identical wood members.
Exterior Elements:

Walls:
The wood framed walls bear on the board-formed concrete foundation and are clad in cedar shingles. A water table made of wood strips spliced together with metal plates over the joints establishes a lower boundary for the cedar shingle siding, which rises to the base of the second story windows. A horizontal band establishes the transition from shingles to the vertical board and batten siding of the upper story. The banding is made up of three dimensions of wood board, including a simple rectangular 1” x 2” piece with a concaved molding underneath and wood dentils located at even intervals. At even intervals, there is a wood block, or dentil, located under the band that interrupts the molding piece. At the front projection there is a slight flare in the shingle wall above the recessed porch. The water table, cedar shingles and the horizontal banding are painted brown, while the window sashes and the board and batten siding are painted white. All elevations have wiring strung along the walls. It is painted brown or white so as to be unobtrusive.

Some of the shingles loose, cracked, weathered, and in some cases, missing altogether. Some of the battens of the second story siding are missing as well. The middle attic vent on the south elevation is missing and has been boarded over with plywood. The screens on the attic vents are deteriorating. The watertable is weathered, warped, and the paint is deteriorating. The

Condition and Treatment

Wall flares outward above main entry.
banding between the shingle siding and board and batten is also weathered. The decorative brackets under the eaves are deteriorating.

Loose shingles and battens should be reattached to the wall or replaced in kind if severely damaged. The water table should be reattached where it is coming loose and areas of rot on the water table should be cut out and replaced, using the same material of identical dimensions. The entire section of board should not be replaced if only a small section of the board is rotting. The walls should be repainted regularly in the historic colors. Deteriorated shingles and board and batten siding should be replaced in-kind. The exterior siding should remain as it is now, with shingle siding on the first story and board and batten siding on the second story. The shingles, board and batten, and all wood trim should be painted brown as they were originally, rather than the current white and brown combination seen now.

Roof:

The hipped roof has a slope of 7:12 and is covered with composition shingles. The rafters range from 16” on center to 21” on center. The rafter tails are decorative pieces with notched ends. The skip sheathing is made of 1” x 4” boards that are spaced 3” apart on average. The original wood shingles are visible behind the sheathing when viewed from the interior. Dormer vents are located on the east, south and west elevations, with metal flashing at the valleys. Three rectangular, louvered, wood vents are located on the south elevation. A modern metal gutter system has replaced the original gutters located on the approximately 24” wide eaves. Two boards that compose the sofit under the northwest eave have been replaced.

The north addition has a different roof system. It is clad in the same composition shingles, however, the rafters are 2’ on center, with 1” x 6” skip sheathing that is spaced at 2” intervals. The fascia board is not the same and the rafter ends do not have the same decorative notch detail as those on the rest of the building.
Condition and Treatment

The roof is in good condition. There is heavy moss growth on the composition shingles and broken or clogged gutters that are causing water to flow down the side of the building. This has caused water damage to the exterior walls.

The gutters should be cleaned seasonally, repaired where bent, and reattached to the eaves where they are loose. Downspouts should be repaired and dented or rusted components replaced. The original gutters were probably made of wood and may be restored if feasible. Moss should be removed from the composition shingles using a gentle chemical moss deterrent or by sweeping gently or power washing very lightly.

Full roof replacement, using cedar shingles, is recommended to restore the historic appearance of the building. The exposed rafter tails are character-defining features and should remain intact. Repairs and or replacement of deteriorated rafter tails should be done with identical materials.

Foundation:

The foundation is made of board formed concrete covered with parging. There are several rectangular vent openings for the crawlspace on each elevation. Some of these vents are covered with plywood, while others have wire screen over them.

Condition and Treatment

The foundation suffers from minor cracking. Some of the crawl space vent covers are missing, and some of the openings are boarded over with plywood. Moisture is collecting in the crawl space due to broken steam pipes under the building. The basement floor is in poor condition with large cracks and potholes. Moisture has collected in the southeast corner of the basement, coming from an unknown source along the joint between the wall and the floor. There is a puddle of standing water in the basement’s northeast room caused by a leaking sewage pipe. The basement walls and ceiling are in fair condition with no major problems visible.
Crawl space openings are boarded up.

The current height of the foundation above the grade should be maintained. The foundation should not be painted in order to maintain the building’s historic appearance. The covers of the crawl space vent openings should be repaired and replaced to keep pests out from under the building.

Windows:
All of the windows are double-hung wood sash. Most of the first floor windows are twelve-over-twelve configuration, with two four-over-four windows located at the porch. There is one nine-over-nine window located on the south elevation. A 14-pane transom window is located above the main entry doors on the south elevation. The second story windows are mostly six-over-six and four-over-four configurations. All windows have 2” x 6” wood trim pieces and decorative hoods. The sills consist of 2” x 6” wood pieces.

Typical window, showing sill, hood, and trim details.
Evidence of original wood panels located below widows on north elevation.

Assessment:

The windows are in fair condition. All of the first story windows show evidence of original wood panels that used to be located under each window. These panels have been removed, except for one panel located behind the concrete room located on the northeast elevation. Some windows have a few broken panes of glass, and in one place a pane has been replaced with a piece of Plexiglas. All of the muntins are intact on the windows. The bottom rail of some windows is deteriorated, and has been repaired with a metal L-bracket. Some of the parting strips are coming loose or missing and many of the sash cords are broken. The glazing putty is deteriorating and most of the windows have deteriorated paint. Many of the windowsills are weathered, especially at the southeast corner of the building. One of the first floor windows on the south elevation has been replaced with a 9/9 double-hung wood sash window. The north addition’s windows are in good condition.

Condition and Treatment

The windows need varying degrees of repair. Damaged muntins should be repaired as necessary and any cracked panes should be replaced. Rotting rails and sash joints should be repaired through the replacement of rotten parts, reworking of joints and reinforcement with inconspicuous means such as wood glue. Loose parting strips should be reattached and broken sash cords should be replaced and the sash weights reconnected. Windows should be repainted regularly, using white paint. Each window should be removed from its frame and dismantled for repair. Deteriorated trim around the windows should be replaced in-kind.

Doors:

There is one set of double doors on the south elevation that serves as the main entry to North Pacific Hall. These wood doors have 12 panes of glass in their upper portions and a single panel below. They are painted brown and surrounded by wood trim that is similar to that around the windows. This trim includes a decorative hood as well. The entry doors appear to be original, with original hinges. The handles and lock have been replaced, however. The west and east elevations each have one door and two modern fire doors. On the west elevation of the addition there is a modern wood door with three panes in the top portion of the door. On the addition’s east elevation there is a single wood door that has the same characteristics as the main entry doors.
Main entry double door set.

Condition and Treatment
The original doors at the main entry have deteriorating paint, but are operable, and in fair condition. The fire doors on the east and west elevations are in good condition. The doors on the north addition are in good condition with no major problems evident.

Current modern doors should be replaced with historic wood panel doors. Original doors and hardware should be maintained in working order. Deteriorated trim around the doors should be replaced in kind.

Porches/Entries:
The recessed porch has a ceiling of stained tongue and groove boards with one light fixture mounted on plywood in the center. The walls are shingled and have 1”x 4” wood baseboards. The supporting posts are wood and have a simple capital and base. There is a block of wood attached to the inside of each column where a sign was once attached with a pole. The columns of the porch have been patched from the railing downward. The railing is not original, and its height has been. The concrete porch slab meets three concrete steps that lead down to the sidewalk.

The east and west elevations both have small, centrally located porches. The projecting covered entry of the east elevation has a handicapped-access ramp made of pressure-treated wood attached to its south side. Both porches are built over original concrete steps. They have wood decking, wood railing, and wood columns set on new concrete blocks. The gable roof is attached to the exterior wall of the building and is covered in composition shingles. There are two collar ties located under the gable. The porch gables have the same notched detail as the roof rafters on the building. The lighting is not historic. The fire escapes above the porches on both elevations are made of wood.
The front porch. Note the wood blocks on the inside of the columns.

The front porch columns have been patched.

Condition and Treatment

The slab floor of the entry porch has settled and is sloping to the northwest. It is cracking at the foundation wall. The concrete steps have settled and are sloping toward the north. They do not meet the porch slab. There is one crack in the second step. The porch columns have been patched and there is a water spot on the northeast corner of the ceiling.

The roof of the east porch is mossy and missing the cross beam that runs from north to south. The fire escapes railing is loose, because it is not tied to the concrete footing.

The south porch should be inspected to determine the cause of settling. The concrete steps should be realigned and the ground underneath should be properly reinforced to prevent future settling. The steps may need to be re-poured if cracking and spalling is too severe. The northeast corner of this porch’s ceiling shows signs of water damage and should be investigated.
for leaks from above. The east porch of the addition has rot in the railing, which should be removed, replaced in kind, and painted regularly.

Unique features/Details:

The truss in the west section of the building is unique to this building’s structure. On the exterior, the character-defining features for all of the Ludlow and Peabody buildings are expressed on North Pacific Hall. Those features include the flared wall above the porch, the combination of shingles and board and batten siding, notched rafter tails, and decorative wood brackets.

A concrete “bunker” is located at the west end of the north elevation. It houses tanks and piping that continue into the crawl space. Evidence of a chimney remains at the west end of the bunker, where some bricks remain and there is a patch in the eave above this location.

Condition and Treatment

Generally, the features are in fair condition. Several features are weathered and showing signs of water damage. The decorative wood brackets are deteriorating due to moisture and many of the wood details are cracked and checked.

Despite the obsolete structural purposes of the attic truss, it should remain in place incase a full interior restoration, including the opening of the second floor dormitory space, occurs. The notched rafter tails are an important feature and should maintain a protective coat of paint. The decorative wood brackets should be replaced in-kind and be painted regularly.

The concrete bunker should be maintained.

Interior Finishes:

Walls:

The basement walls are made of poured concrete and painted. There are two large holes cut through the wall that lead to the west and east basement extensions. A concrete wall supports one end of the barrel vaulted ceiling of the basement fireplace. In the center of the basement is a fireplace made of brick that is parged with concrete. There is a flue opening on the west side of
this fireplace wall. The east elevation shows evidence of the wall’s brick interior. The walls of the west and east basement extensions are made of board formed concrete.

Most of the interior walls are finished in drywall, with the original lathe and plaster underneath. The first floor lobby has lathe and plaster walls with wainscoting on the wall adjacent to the stairs. A picture rail is located between the front doors and the windows on either side of the entry. The door and window moldings measure 1”x 6” and are painted white. There is an arched entryway leading to the east and west hallways that is covered with drywall. The east and west hallways, offices, and bathroom are finished in drywall.

The second story common room is finished with ¾” wood paneling, which lies over drywall, which in turn is installed over the original lath and plaster. The hallways are walled in textured plasterboard. The rooms are finished in textured drywall over lathe and plaster. The rooms of the east hallway have an arched entry wall approximately three feet from the door with closet space on either side of the door. The bathroom walls are finished in drywall.

Arched entry off of lobby into west hallway.
Each of the east rooms has an arched interior wall

Condition and Treatment

The interior walls are in good condition, except for the basement. The basement walls appear to be spalling. Any moisture source that may be causing this problem should be identified and remedied. The wall should then be patched using a cementitious mortar.

The wall surfaces should be kept painted and well maintained. It is recommended, however, that all non-original wall materials (drywall, etc.) be removed to expose the original lath and plaster walls beneath. The interior partition walls with the arched openings in the east rooms on the second floor should be kept intact.

Ceiling:

The basement ceiling is unfinished, exposing the floor joists. Various pipes hang from the ceiling.

In general, the first and second floor ceilings are finished with drywall covering the original lath and plaster. The ceiling in the lobby is covered with acoustic tiles and the underside of the staircase is finished with textured drywall. There is 1” molding around the ceiling. The first floor offices and bathrooms off the hall have drywall ceilings. There is an acoustic tile ceiling with an unpainted wood molding in the main stairwell.

The second floor common room has a drywall ceiling covered by an acoustic tile drop ceiling. The hallways have drywall ceilings. The women’s bathroom ceiling is of an unknown type. The men’s bathroom ceiling is drywall. The east rooms have acoustic tile ceilings, while the west rooms have drywall ceilings with lathe and plaster underneath.

Treatment and Condition

The ceilings are in good condition. The surfaces should be kept painted and well maintained. It is recommended, however, that all non-original ceiling materials (drywall, acoustic tile, etc.) be removed to expose the original lath and plaster ceilings beneath. The ceiling heights should remain the same.
Floor:
The basement floor is made of poured concrete that slopes toward the center of the space where a drain is located. The floor in the west extension of the basement consists of bare soil. The east extension has a concrete floor.

The first floor lobby is finished with carpet that is installed over the original wood tongue and groove boards that are oriented east to west. There are 1” x 6” wood baseboards with a ¼” quarter-round molding on top. Vinyl baseboards cover the original wood baseboards. The east and west lobby areas are finished with vinyl baseboards only. The hallways and first floor offices are finished with carpet covering tongue and groove floorboards, with vinyl baseboards. The women’s and men’s restrooms are finished with vinyl floor covering. The wood stairs are covered with carpet that is glued in place.

The second floor hallways have carpet and vinyl baseboards. The common room has carpet installed over vinyl tile. The east and west rooms have carpet installed over vinyl tile and vinyl baseboards. Both bathrooms have vinyl floor coverings.

The center of the attic floor is composed of 1” x 10” planks running east to west. At the edges of the floor, exposed ceiling structure with batten insulation between the joists is present. These joists are approximately 16” on center.

Condition and Treatment
The floors are in good condition, however the attic floor shows signs of minor moisture damage at the base of the toilet vent pipe. The cracks in the basement floor should be monitored with a simple gauge and if they are found to be progressive a structural engineer should be consulted to assess the building. The potholes in the basement concrete floor should be patched with cementitious mortar.

The tongue and groove floorboards of the main floors should be restored, through the removal of all non-historic materials (carpet, vinyl tile, etc.) Once restored, the wood floor should be well maintained. In high-traffic areas, it may be prudent to retain the protective covering of modern floorings for the time being.

Doors:
The majority of the solid core wood doors on the first and second floor measure 32” x 79” and have metal frames. The doors have metal locking knobs. Some doors have trim that is 1” x 4” wood with a rounded edge. The main entry doors are original wood panel doors, with 1” x 6” wood trim. A five-panel, wood door with original hardware provides the entrance to a closet in the lobby. The fire doors have a metal veneer over a solid wood core.

Condition and Treatment
The doors are in fair condition. All doors show signs of wear and tear. The hardware should not be painted and should be kept in working order. The solid core doors may not be original. It is recommended that they be replaced with wood panel doors like that found on the storage room and those found in other Ludlow and Peabody buildings on campus.

Unique features/Details:
The central stairs are a unique feature of this building. They ascend on each side of the lobby closet and join at a center landing to rise to the second floor. The arched openings of the
partition walls in the second floor rooms on the east side of the building are also unusual. The fireplace in the basement is a unique feature because of its structural design that includes a concrete barrel vault.

Condition and Treatment

The staircase is in good condition. The carpet should be removed from the treads to reveal the original wood finish. Great care should be taken to maintain the current condition and integrity of the wood work of the stairway. The partition walls and their arched openings should not be altered or removed, nor should the basement incinerator.

The second floor common room. Showing modern material covering historic finishes.

Central stairs as seen from the first floor lobby.

Modifications:
Whitmore Hall has had numerous modifications since 1910. The original design was symmetrical in plan. The western staircase was removed, however. The original finishes have
either been covered up or removed and modernized. The first floor spaces have been rearranged to accommodate modern uses. Changes have included the addition of walls, new interior openings, new doors and new finishes. On the exterior, the panels below the first floor windows have been removed. Two external fire stairs have been added, one to the west elevation and the second to the east elevation. A small two-story addition was added to the north elevation.

Survey Date: 4/25/04
NORTH PACIFIC HALL ELEVATIONS

North elevation. East elevation.

South elevation. West elevation.
POWER PLANT/LAUNDRY BUILDING

Style: Craftsman

Form: 1-1/2 story structure clipped gable and hip roofed structure

Configuration: Rectangular

Physical Description:

The 1-1/2 story Power Plant/Laundry Building is a Craftsman, shingle style structure. It has a roughly rectangular plan and sits on a poured concrete slab foundation. The structure has two major roof forms, including both hipped and clipped gable. The roof is covered with green composition shingles and has a number of small gabled dormers that serve as air vents. There is a prominent brick chimney covered with parging that extends from the approximate center of the building.

The main entry of the building is on the west elevation of the one story portion of the building. The entry is covered with a cantilevered gabled dormer that projects from the main
The doors of this entry have six panes of glass in the upper portion of the door and one panel below. A fourteen-pane, fixed, wood window is located over the double doors. There is another entry on the East elevation that provides access to the boiler room. This single five-panel door is split such that the top two panels are hinged separately from the other three panels. There are other doors into the building but they are not the common means of egress. All of the windows and trim are made of wood and painted white. There are a variety of window types on the building. The building is covered with wood shingles with the exception of the second floor portions of the east and west elevations over the boiler room. These areas are clad in board and batten siding. Currently, the shingled portion is painted brown and the board and batten is painted white.

Abutting the north elevation of the wood structure there is a shallow pitched, gabled roof made of corrugated metal that sits on top of low board formed concrete walls. Its walls are painted brown. This structure is attached to the boiler room and was originally designed to serve as a coal bin, but was quickly converted to store other forms of fuel. For the purposes of this report it will be called by its historic name. In the gable end, above the concrete wall and under the roofing material, there are a few small openings and a square door in the center. This portion is framed with wood and clad in brown shingles.

In plan, the Laundry and Power Plant includes four major spaces and two minor spaces. The long one story component houses the laundry facility. The boiler room is sunk below grade and rises one story above grade. It is surmounted by a second story that houses a large open attic space that is accessed from the laundry room. This vaulted space is thought to have been a place to dry laundry. Evidence of ropes that the laundry was dried on remain in the rafters. The other main space is the coal bin on the north side of the boiler room. The minor spaces are found in the northern part of the laundry room space and are comprised of a workshop area and a storage area.
Landscape/ Site Description:

The Laundry and Power Plant Building is in northeastern portion of the main quad. It is north of Fraser Hall and east of Whitmore Hall. The building is sited on level ground and a recently paved road boarders it on east and wraps around the north side of the building. This road is the major vehicular thoroughfare for the campus. A large, sliding, garage door faces the road to the east, while the pedestrian entry to the laundry facilities faces Whitmore Hall to the west. The main set of double doors into the laundry facilities are at grade level and there is no elevation change between the interior and exterior of the building.

Hemlock trees surround the low concrete walls of the coal bin and grass covers the ground surrounding the building. Though the entry landing is comprised of a concrete slab, all other pathways around the building are covered with gravel.

Excess gravel against parging and water table on west and south elevations

Condition and Treatment

Over the years, soil has been allowed accumulate against the foundation causing the original parging on the foundation to deteriorate. This soil accumulation also exposes the lower portions of the wood walls to continual moisture. The constant contact with moisture as led to the deterioration of the water table in several locations around the building, especially at the southern corner of the east elevation. The hemlock trees are also causing deterioration to the wood siding, eaves, rafter tails, and bracket on the northern most portions of the east and west elevations, as well as the north elevation.

Excess soil and gravel should be moved away from the foundation. Foliage and ground cover should also be pulled away from the foundation to allow for better drainage. Hemlock should be trimmed so that they do not touch or rest on any portion of the building. Brushing the trees would allow for better airflow to assist with the drying of the building components and deter rot. The storage of coal and other heating fuel in the coal bin on the north side of the building also suggests that soil in the area should be tested for contamination.
Structural Description:

The Laundry and Power Plant Building sits on a board formed concrete and slab foundation and is platform framed. There is a poured concrete foundation with a partial basement. The floor of both the laundry room and boiler room are concrete while the joists for the attic above are protected with fireproofing material and were not accessible.

Condition and Treatment

The wood stud walls on top of the concrete foundation appear to be plumb and show no major structural deficiencies. However, deterioration in the sill is suspected where the water table has decayed, especially in the south elevation of the Power Plant block.

Further inspection of the structure should be conducted where the shingles and water table have decayed. Proper maintenance of the building envelope, both walls and roof, on the interior and exterior of the building should be continued to maintain the building’s structural integrity.

Exterior Elements:

Walls:

The first floor level of the exterior walls of the Laundry Room and Power Plant are clad in cedar shingles that are painted brown. The board and batten siding in the clipped gable ends of the Power Plant is painted white. On the single story portion of the building, shingles extend from the water table to the frieze board. This frieze board continues across the east and west elevations of the Power Plant portion and forms the division between the wood shingles and the board and batten siding. A water table that is comprised of a 24” wood board capped with a 2” wood molding is used as the transition between the foundation and the siding.

Detail of east elevation with unused holes, dryer vents and broken window trim
There have been many modifications made to the east elevation for power consumption and venting of the electric dryers. Metal utility boxes have been installed on the walls, and dryer vents have been cut through the walls above the water table.

The exterior walls of the east and west elevations of the coal bin protrude approximately 24” above grade and are painted brown. Regularly spaced metal collar ties protrude through the concrete. The gable end in the north elevation is clad in brown painted wood shingles; there is no water table or frieze board element. A small, centrally located door, flanked by two small windows and a small arched opening at the far right corner of gable pierce the wall. The shingled wall surface does not meet the peak of the gable, leaving a triangular opening above the door.

Condition and Treatment
The paint is failing on all exterior surfaces of the building. Shingles are water stained throughout the entire structure and where paint has deteriorated completely, rot is evident. This is especially true on the south, west, and east elevations. Shingles are missing in many locations and on the east elevation the building paper and diagonal sheathing have been exposed. Also on the east elevation, various holes have been cut through the siding where dryer vents have been installed. Other holes, no longer in use, are still exposed and have become attractive nesting places for insects, especially wasps. The trim is extremely worn and in some places large amounts of force have splintered or sheared off the decorative elements. At the corners of the structure, the shingles are not lapped properly, which can lead to decay of the main structural elements beneath.
The water table has deteriorated substantially on all elevations and is particularly susceptible to deterioration from water splashing from the eaves above where there are no gutters. The small cap of the water table is deteriorated and missing in places on the east, south and west elevations. A considerable amount of rot is evident in the water table of the Power Plant block due to exposure to moisture. Other areas of the water table have been damaged by cars and other mechanical equipment that have been allowed in close proximity to the structure.

Immediate repair of the roof is necessary to prevent further water damage to the walls. Holes near the eaves should be patched and deteriorated or missing shingles at the edges of the roof should be replaced in kind. All trim and wall surfaces should be properly prepared and repainted in a historically accurate color.

The base of the walls and the water table has deteriorated substantially and should be treated for rot. Further removal of the existing water table and inspection for rot should be conducted. The water table should be replace in kind as needed around the entire building.

Roof:

The roof of the Laundry and Power Plant Building is covered with composition shingles laid directly over a wood shingle roof. A metal ridge cap sits on top of the composition shingles and covers all ridges of the roof. The hipped roof over the Laundry Room has three small triangular eyebrow dormers with wood louvers on both the east and west elevations. Decorative rafter tails are exposed under all of the eaves and on the clipped gable ends of the Power Plant where heavy decorative brackets support the eaves. There are no gutters attached to the roof of the building. The roof of the coal bin is made of corrugated metal.
Historic drawings and photos suggest that there was once a belfry located on top of the clipped gable roof mass.

Photo: Heavy bracket on east elevation of clipped gable

Condition and Treatment

The roof of the coal bin is in good condition, barring some rust. The roof of the Laundry and Power Plant building is in poor condition, however. Moss growth is apparent on top of and underneath the composition shingles, especially in the valleys between roofs. The lack of gutters and downspouts, holes through the roofing, and missing shingles are causing severe problems to the Laundry and Power Plant structure. Some of the fascia boards are damaged or missing and the flashing between the fascia boards and the composition roofing is rusted and staining the trim. Many of the rafter tails are deteriorating due to failing paint, while others are water stained. The six heavy brackets under the eaves of the clipped gables on the east and west elevations, as well as all of the rafter tails, show signs of decay and deterioration from water infiltration and failing paint. Also on the East and West elevations, under the eaves, the wood bead board between rafters is discolored and decaying. Some on the east elevation are so deteriorated that they are sagging. Paint is pealing under the eaves and on many of the fascia boards. Paint is also deteriorating on the dormer fascia boards and vent louvers. Further paint failure is occurring on the gabled element over the main entry on the West Elevation, leaving this character defining feature susceptible to rot. On the Southwest corner of the south elevation, the eave appears to have been impacted by a large vehicle. The metal ridge cap has buckled and the supporting rafter has splintered. The shake molding is also broken and missing while the shingles and sheathing have been displaced.
There is an especially large hole located in the center of the ridge on the north face of the roof that might be attributed to a previous effort to patch a hole where the belfry was once located. This hole extends through the roof and is allowing large amounts of water into the interior of the airing loft. There are also small patches of damaged or missing composition shingles that are leaving the old wood shingles exposed. This exposure is allowing moisture between the layers, trapping it, and expediting the decay of the roof.

All of the existing roofing materials, both composition and wood shingles should be removed from the structure and the entire building re-roofed with cedar shingles as soon as possible. Necessary replacement of the sub-sheathing should also be considered. While re-roofing the metal ridge caps and all flashing should be replaced. Rafter tails need to be repaired or spliced with new wooden members of the same shape. The fascia boards, rafter tails, and eaves should all be repainted to discourage rot. Reconstruction of the belfry should be considered. The historic drawings by Ludlow and Peabody and historic photographs should be used in its construction.

Foundation:

The foundation is made of board formed concrete, rising from 8” to 18” above grade. The Laundry Room component of the building has a slab on grade foundation while the foundation for the boiler room continues to approximately fifteen feet below grade where another concrete slab has been poured. The board formed concrete walls of the coal bin are held together at the top with tension cables and rise approximately 24” above grade, but descend approximately 15 feet below grade to match the depth of the boiler room. The exposed concrete foundation on the east, west, and south elevations are covered with parging and painted. The exposed concrete foundation of the coal bin is painted brown; however, the foundation on the north elevation of the Power Plant is not covered with parging, nor is it painted.

Condition and Treatment

Vegetation and moss is growing next to the foundation in many places and is causing the parging to crack and deteriorate. Moisture rising from the surrounding soil is causing the paint to deteriorate near the soil line, especially where the intersecting valleys of the building masses drain rainwater directly onto the ground. On the east elevation, where the large sliding door
opens into the boiler room, the concrete of the foundation is worn. This is most likely from the loading and unloading of equipment into the pit. The reinforcing bars are not exposed and no sign of spalling is evident. There is also some minor cracking in the parging and foundation but it does not appear to be structural. On the west elevation, a new concrete slab has been laid against the lower portion of the wood water table and existing foundation.

For historical accuracy, the new slab on the west elevation should be removed. The installation of gutters on the roof and the removal of the excess soil and vegetation would greatly reduce the amount of moisture against the foundation. It would also increase the lifespan of the paint and parging. After the cracks in the foundation have been repaired with an appropriate cementitious mortar, the foundation should be repainted, with attention given to application near the soil line. Otherwise, the foundation should be maintained in its present condition.

Windows:

Six-over-six, double-hung, wood sash windows are the primary window type on the Laundry and Power Plant Building; however, there are several other types used to articulate the character of the building. Six-pane wood casement windows and fixed, eight and nine-pane fixed wood windows can be found on both the east and west elevations. The window trim consists of simple flat wood boards, with a sloped and slightly projecting sill. One opening in the west elevation no longer has glazing, but is screened. Another, on the east elevation is covered with plywood. There are no glazed windows on the north elevation; however, there are two small openings located in the gable end of the coal bin. These have a rectangular configuration and are oriented horizontally on either side of the door. They are framed with wood boards and covered with screen.
Condition and Treatment

The condition of the windows range from good to poor. The glazing putty is failing and the white paint is peeling on many of the windows. The paint on the exterior trim of many of these windows is also failing or visibly marked by water stains. This is also happening on the interior trim of the windows in the Laundry Room. Some of the sash cords have been cut and other windows appear to be painted shut. Glazing is cracked or broken in some of the windows and some glazing has been replaced with frosted safety glass. Blocking has been screwed onto the upper sash of the double-hung windows and some windows have been repaired with metal L-brackets in the corners of the sashes. The casement windows are also painted shut and one of these windows has an extremely rotten stile.

The windows with cracked or missing glass are the highest priority for repair; however, all windows should be refurbished for safe and smooth operation. The glazing putty should be reapplied and all sashes and trim should be painted in the appropriate and historical color palette. The dislodged screens over the openings in the gable end of the coal shed should be repaired to keep pest out. They can be easily be reaffixed to the window opening with staples or small tacks. The screen that has been cut should be replaced in kind.

Siding door (D-3 and D-4) in east elevation
Doors:

There are eight exterior wood doors in the Laundry and Power Plant building but only three are used regularly. All but one appear to be historic. The exception is simply a door made of plywood.

The hatch-like door in the north elevation of the coal bin is 42” wide and 36” tall and made of vertical 3” grooved boards that appear as narrow v-notched strips. The door hardware consists of two strap hinges and a latch secured by a padlock. The triangular portion of wall between the door’s lintel and the peak of the gable is open and covered with a screen. The top of the concrete foundation acts as the sill for the door opening.

The three doors in the east elevation are all located in the power plant portion of the structure. One door is a split, five-panel door with modern hardware. It measures 30” wide and 84” tall. The sliding garage door is 120” wide and 88” tall and made of six panels, two of which are windows with nine-panes each, though one of the windows is covered with plywood. The other door is a two-panel door, 27” wide and 88” tall, with narrow 2”- 3” vertical planks.

The main doors on the west elevation give direct access to the laundry room. These consist of single-panel wood doors. The doors each measure 32” wide and 79” tall. The upper portion of both of the doors is glazed with six-panes, though some of the glazing is missing. Another set of wood double doors is configured much like the main entry though they have a larger width: 36” wide a piece and 79” tall. These doors also have six-panes in the top panel, but the bottom panel is revealed and is detailed with 1” wide grooved wood set at an angle. The angle is mirrored in the opposite door of the set.

Condition and Treatment

The hatch-like door in the north elevation is in good condition.

The paint is deteriorating most of the doors on the east elevation. On the sliding garage door, one of the windows is covered with plywood. The paint is peeling and the bottom of the door is deteriorating from excessive water infiltration. The frame of this door is also sagging and is worn from use. The door to its left maintains its historic hardware though it has been painted with latex paint that is cracking. The bottom rail is split and has two pipes protruding through it.

The main entry door has some missing glazing. The lower panels of both doors are covered with plywood screwed onto the frames. These doors are also sagging and do not close in their frames properly. The double doors to the left of the main entry have their original hardware. The paint on the trim and doors is peeling. Some of the trim around the lower panels is gone or severely worn. One pane of glazing is missing and other panes have been replaced with textured or painted glass. The single door on the west elevation is missing all of its hardware and three of the nine panes of glass in its upper half. There are two panels below the glazing. Though the wood and wood panels appear solid, there are visible cracks in the door, moss in the muntins, and severe paint deterioration throughout the door.

All of the doors should be taken off their hinges, and examined more closely. Missing trim pieces should be reconstructed, glazing repaired, and all doors and trim pieces repainted in historically accurate colors. Doors that do not fit their frames should be repaired so that they can be closed and latched properly. This will also cut down on wear of the doors.
Unique features/details:
Though no longer in use, the smoke stack of the Power Plant rises approximately 25’ above the wood framed structure. It is constructed of un-reinforced red brick masonry that is parged. The square base of the chimney rises from the boiler room of the Power Plant and has one small cast iron door in its side. The stack transitions from a square base to a round cylindrical portion above the roof of the building. It has decorative corbelling around the cap. This feature is unique to the building and enhances the historical character of the campus.

Condition and Treatment
The metal flashing between the roof and the smoke stack is not installed properly on the east elevation. It lies on top of the composition shingles, rather than under them. However, the flashing seems to be properly installed on the other elevations. The parging and brick on the base of the smoke stack is spalling on the east and west elevations and moss covers the shoulders that transition the square base to the circular stack. There is a large crack from the base to the upper most detailing of the chimney. From this large crack, smaller cracks run laterally around the chimney. There is heavy moss growth on the corbelled detailing around the top of the stack. Plant foliage is also growing in the loose bricks of the chimney cap. The mortar of the cap has deteriorated and bricks have become displaced. The smoke stack has a black sooty discoloration that is more pronounced in the north and east elevations.
The smoke stack should be capped to prevent moisture entering the interior. It should also be reinforced with steel from the interior. Exterior bracing should be kept to a minimum to reduce the visual affects of modern intervention in this historic landmark building. The flashing between the roof and the chimney should be inspected when the building is re-roofed. Repairs to the flashing should be made in accordance to what the inspection reveals. After reinforcing the smoke stack, the chemical makeup and color of the parging should be recorded. It should then be stripped to allow for the repointing of the mortar between the bricks. After repointing, a new layer of parging, using an appropriate material, should be applied to the stack.

Interior Finishes:

Walls:

The interior wall surfaces in the Laundry and Power Plant are varied due to the utilitarian nature of the building. The walls in the laundry room are covered in vertical 3” tongue and groove wood boards. The baseboards consist of two layered flat boards of different heights. A strip of flat and rectangular molding caps the taller board. The room is painted white from floor to ceiling. The walls of the airing loft above the boiler room consist of the exposed structural studs and diagonal wall sheathing. The studs are approximately 16” on center. The rafters are also exposed overhead and are approximately 24” on center. The lower portions of the boiler room walls are made up of the poured concrete walls of the foundation. The upper walls are covered in masonite or asbestos panels that have been affixed to the structure with screws. The
east wall is an exception and consists of exposed studs approximately 16” on center and vertical board sheathing.

Condition and Treatment

The walls of the laundry room are generally in good condition though there are some scuffs and scrapes on the finished walls. There are also some water stains on the upper portions of the east wall. The wall surfaces should be refinished and painted. The source of the water stains should be determined and addressed as needed.

The walls of the airing loft are in fair condition though moisture from the failing roof has penetrated the structure. The studs should be inspected for areas of decay. Holes in the siding and diagonal sheathing should also be patched to prevent the entrance of insects and other pests.

The Boiler room is also in fair condition, though the masonite on the walls is most likely not original to the structure. The masonite panels are slightly bowed and buckled in places. These panels should be removed to return the interior to its original appearance for historical accuracy. If the some form of fireproofing is necessary for the functionality of the boiler room a more sensitive surface finish like gypsum board should be considered for this application. The upper portion of the east wall and poured concrete walls are in good condition with only general wear and tear visible. These surfaces should be repainted.

Ceiling:

The ceilings in the laundry room are covered in 3” wood bead board that runs east to west. Various fixtures and utilities penetrate it. The Airing loft ceiling consists of the exposed rafters; skip sheathing and the underside of the roof shingles, and the boiler room ceiling is covered with masonite panels that are affixed with screws.
Condition and Treatment

The ceiling in the laundry room is in good condition though the modern electrical system now dominates its surface. It is recommended that the ceiling here receive a fresh coat of paint and that the fixtures be concealed to emphasize the historic finish of the room.

The ceiling of the airing loft has many issues that are related to the condition of the roof. There are two major holes in the roof, which have affected the interior surfaces of the airing loft. These holes are allowing large amounts of water into the interior of the building and causing serious concerns in the structure of the roof. A temporary pony wall has been inserted underneath the valley in the southeast corner of the room. The rafters on the north side of the loft have been fitted with a unique shelving system consisting of boards suspended on nails between the rafters. The rafters have also been fitted with loops of rope that once held clotheslines.

Re-roofing the Power Plant should be a high priority. Necessary repairs or replacements should be made in-kind and an engineer who understands the nature of historic structures should recommend structural modifications. Some of the sheathing and rafters may need to be treated for water damage, or replaced.

The masonite panels on the ceiling of the boiler pit are not original. They are slightly buckled and bowing in places. These panels should be removed for historical accuracy. Since they also conceal the bottom side of the floor above, which may be experiencing water damage, they should be removed and the structure assessed.

Floors:

The floor of the laundry room consists of an exposed poured concrete slab. Along the south wall, a channel in the floor measuring 43” across and 7” deep runs the length of the room. At the east end of this channel is a 14” raised platform also made of poured concrete. It appears to have been beaten down with a sledge hammer on the side closest to the channel. The floor of the airing loft consists of 7” wood boards running north to south. A large portion of the floor in the center of the room has been covered over with plywood that is affixed with screws and is not original. The boiler room floor also consists of a poured concrete slab. A channel in the floor runs the perimeter of the space and down the center of the room from east to west. It is about 7” across and 4” deep.

Condition and Treatment

Though there are small cracks in the concrete slab in the laundry room, the floor is in good condition and little needs to be done to this surface.

The floor in the airing loft seems to be in good condition with the exception of the center where the plywood is acting as a patch. This is the section of floor directly below the hole in the roof and may be experiencing severe water damage. The plywood patch should be removed and the condition of the floor beneath assessed for structural stability. Any fabric that is experiencing rot or decay should be repaired or replaced in kind.
The poured concrete slab in the boiler room is also in good condition though a large amount of standing water fills the channel and has puddled in the corners of the room. Proper drainage of the channel is necessary to insure that water exits the boiler room efficiently.

Doors:
There are only two interior doors in the Laundry and Power Plant building. One leads from the laundry room to the airing loft. This wood door has one panel. The upper portion is glazed with six panes of glass. The other door is difficult to access in the north wall of the boiler room and leads to the coal bin. This is a one-panel door.

Condition and Treatment
The doors are in fair condition. The door that leads to the airing loft is painted white though the muntins have not been painted. The upper two panes of glass are textured while the lower four panes are missing and have been covered with a piece of plywood. The original hardware is not present and the door is secured by a chain and padlock passing through the plywood panel and through the non-original stud and plywood wall surrounding the staircase to the airing loft. If this door is to remain, all glass and hardware should be replaced.

The door in the boiler room is also painted white. It is fully operational and has its original hardware. This door is in fair condition and should be repainted to extend its lifespan.
Unique features/ details:

There is a small shop room at the northwest corner of the laundry room. It is accessed by a set of exterior double doors, though a small single pane casement window opens into it from the laundry room.

The stairs leading up the airing loft are enclosed by a modern wood stud and plywood wall. A door provides access to the stairs, but is likely not original. The stairs themselves are quite wide and are located next to the base of the smoke stack. They are made of wood and the treads are worn.

In the northeast corner of the laundry room, beside the base of the smoke stack is a large (size unknown) cabinet made of wood bead board. It has double doors and appears to be an original furnishing of the laundry room.

The base of the brick smoke stack rises through the airing loft, just to the east of the staircase. The attic space over the laundry room is accessible from the airing loft. The floor level is raised above that in the airing loft and a large cylindrical metal tank sits in the center. “V” shaped trusses supports its weight.

A large square post rises out of the center of the floor in the airing loft, but does not continue to the ceiling nor project through the floor to the boiler pit below. It rises just above the cross beams of the roof. In close proximity to this is a framed rectangular opening through the crossbeams. These elements may have been associated with the belfry that sat on the roof directly above their location.

Diagonal wall sheathing is visible where the floor levels change between the airing loft and the attic space above the laundry room. This may indicate that the boiler room portion of the building was constructed first, with the intent for it to stand alone, but was later coupled with the structure of the laundry room.

The boiler room is entered through a door at grade level and a set of wood stairs leads down into the space. A secondary door is located on the west side of the room and is accessed by a metal ladder.

A large rectangular opening that leads into a small sub-grade space penetrates the lower east wall of the boiler room. It has a soil floor and poured concrete walls and ceiling.

There are five major cylindrical metal tanks in the boiler room as well as other conduits, pipes and utilities. These tanks are currently unused and appear to have last been inspected in December of 1990.

The coal storage shed is accessible through a small hatch in the north wall of the boiler room. The interior may consist of two spaces separated by a poured concrete partition running east to west. The spaces smell of petroleum products and small greasy puddles of are visible on the concrete slab floor. It is approximately 14’ deep and housed within the poured concrete walls of its foundation and capped by a corrugated metal roof.

Condition and Treatment:

The window from the shop into the laundry room has a broken pane and has been painted shut. The window should be made operable again. Glazing should be replaced and the frame repainted. Further study of the large cabinet should be done, as it is inaccessible due to modern machinery placed in close proximity to it.

The wood stud and plywood wall around the stairs is not original and was added to bar access to the airing loft. It is not historically appropriate and the lack of hardware and use of a
The wall and door should be removed and the stairs restored to their original open configuration. If the airing loft must be secured, it should be done so that the wall and door are compatible with other materials in the building. Refinishing the existing door would be appropriate, as would sheathing the wall with vertical board similar to that on the other walls.

Further study should be conducted with regards to the belfry to determine when it was dismantled and if replacement is feasible.

The stairs in the boiler room could use a secondary handrail and some of the treads should be replaced to insure the safety those using the space.

The purpose of the rectangular opening in the east wall of the boiler room is unknown and should be further investigated.

Two steel beams run north to south across the ceiling to support the floor joists that rest on it. The date of their installation is unknown.

There is an extreme need to conduct a hazardous materials survey of the coal shed and the grounds surrounding this building.

Plumbing:

There is a black plastic water supply main, located behind the modern washing machines on the west side of the laundry room. This pipe runs into another pipe that disappears under the poured concrete floor slab. This building was originally used as a laundry room so had some provisions made for drainage, however, it is unknown if any upgrades have been made to prevent the brown water from the washing machines from entering the nearby waterways.

Modern electrical upgrades have taken place to accommodate the electric dryers also in the laundry room.

Date Surveyed: 4/28/04
SAGE HALL

Style: Art Deco

Form: Two-story industrial concrete building with flat roof

Configuration: Rectangular

Physical Description:
Sage Hall is a two-story concrete structure with a rectangular plan and flat roof. The building sits on a board formed concrete foundation that cuts into the coastal rock slope to allow for a full basement. Sage Hall has one-over-one aluminum sash windows that are grouped in pairs on each exterior bay. Each window has a cast concrete sill, which was poured in place after the erection of the prefabricated concrete wall. The exterior walls form a parapet around the roof and are capped with painted metal flashing. A one-story addition extends from the west elevation and houses a hydroelectric generator.

Landscape/ Site Description:
Sage Hall is located at the southern edge of the campus, across Lincoln Street to the southeast of the main quadrangle. It sits on the shore of Sitka Sound. The Saw Mill building is located directly to the east. A small wooden building sits to the southwest of Sage Hall on the bank of a small creek. It stores equipment and feeding supplies for the hatchery. An aqueduct directs water from the creek into Sage Hall to operate the captain valve, which drives the hydroelectric generator. South of Sage Hall, an area of land was reclaimed to store large plastic pools for keeping fish. The reclaimed area is surfaced with crushed rock. There is little vegetation around the building.
Structural Description:
Sage Hall is constructed with a grid of concrete columns forming the building’s core. Concrete beams measuring 12” in width tie the perimeter columns together while steel I-beams run east to west and support the wooden floor joists. Prefabricated concrete wall panels with window openings are placed between the concrete columns to form the exterior envelope of the building. The generator room is constructed in a similar fashion with a concrete foundation, columns and beams. The exterior is also constructed of prefabricated wall panels that incorporate window openings. The floor and roof systems consist of 2”x 6” joist at 16” on center.

The basement and first floor of Sage Hall are constructed with a concrete beam and slab system, with a primary beam that runs east to west. The second floor and roof consist of a steel I-beam system where the beams run east to west and wood joists run perpendicular to the beams. The interior wall structure of the building is the same as the exterior, with concrete columns running up both sides of each doorway with wooden walls concealing them. The exterior walls consist of concrete panels, which are furred out with wood walls and lathe and plaster and forming the outer skin.

Board-formed concrete makes up the retaining walls of the building on the north, east and west elevation. The south elevation of the basement is constructed with the preformed concrete panels mentioned above. Three doors and four windows perforate the panels providing light and access to the basement from the exterior. The foundation of the generator room has the same system as that of the main building, but has retaining walls on all four sides. The foundation of the generator room does not connect with the foundation of the main buildings. It does have a 2’ x 1.5’ opening at the ground level on the west side.

Condition and Treatment
There are several problems associated with Sage Hall’s concrete structural systems. The foundation of the building is experiencing underground water penetration on the northern side of the basement. The basement walls have been undermined by large holes that have been drilled into the walls within close proximity to vertical structural members. Major cracks are visible on the ceiling of the basement and have rusty red stains indicating heavy corrosion of the structural reinforcement within. The basement floor has settled substantially toward the south. Field measurements indicate that the floor has settled 4” in 20’ from the north interior wall to the south. This settlement may be attributed to the different composition of the reclaimed land and solid rock under the building.

The entire building should be inspected by a structural engineer to determine the structural integrity of the primary load bearing components and the roof. An immediate inspection of the roof is recommended to determine the structure’s ability to adequately carry snow loads. If moisture has been trapped in the roofing components for an extended period of time, the roof may sag or collapse under the additional weight.

Several structural issues must be resolved in Sage Hall. The reason for cracks in the basement ceiling and walls should be determined and simple measuring devices should be installed to monitor the growth of cracks. If the cracks are determined to be progressive, immediate action should be taken to stabilize the structure. If the cracks are stable, however, the cracks should be patched with a compatible cementitious material. All exposed structural rebar should be coated with oil based paint to halt the oxidization of the material. A long-term solution may involve epoxy injections or anodizing the entire structure to slow the oxidization of the rebar. If necessary, measures should be taken to maintain tension in the concrete structure.
Exterior Elements:

Walls:
The vertical concrete columns expressed on the exterior elevations illustrate the building’s primary structural system. The plain walls with simple tile ornamentation exemplify the industrial style of Art Deco architecture. The facades are oriented in a simple A-B-C-B-A order with standardized modulated window openings piercing walls throughout the building. The west addition also reflects this style of wall detailing that is characteristic of the main building.

Condition and Treatment
The exterior concrete walls have experienced weathering and corrosion due to their close proximity to the water. In general, the paint and parging are peeling and the concrete beneath is spalling. The absence of parging exposes the concrete to salt air and spray, enabling moisture to penetrate the concrete and rust the structural reinforcing members. The south and east elevations of Sage Hall have experienced a considerable amount of exposure and appear to be in the worst condition with rusted rebar exposed.

The existing layer of paint on the exterior of the building should be removed prior to repainting. Damaged parging should be removed and surfaces should then be patched. The surface of the building should be repainted in historically accurate colors. The walls were determined to be a light cream color, while the tile details are actually green. Paint should be removed from the tiles to reveal their original color. Dedication signs and plaques on the east elevation should be repaired and polished.

Roof:
The flat roof is covered with a deteriorated layer of snow seal and multiple layers of tar pitch surface bitumen. The roof spans 29’ from either side of the 16’ wide central core of the building, forming a 74’ wide roof. The roof structure is uses a structural I-beam and wooden joist system with ledger bearing. The roof of the west addition has a similar roof system but uses wood joists that bear on a ledger. It is covered with a bituminous material. The roof drainage system consists of internal downspouts which drain on the south elevation. On the roof, no gutter is present and downspouts only exist on the southern edge of the roof. The roof slopes
very gradually to the south to provide adequate drainage to these downspouts. The parapet walls have metal flashing that is painted white. The color and condition of different sections of flashing show that some has obviously been replaced at some point. Two concrete chimneys penetrate the roof; one with two flues which serves the mechanical equipment, the other that ventilates the second floor of the building.

Bulging and holes on the tar covering of the roof.

Condition and Treatment

The wood members of the roof are in very poor condition. The layers of tar pitch surface bitumen are old and seriously deteriorated. Their uneven expansion and deformation has jeopardized the roof slope in the direction of the down spouts. Furthermore, large holes have allowed moisture to penetrate the layers of the roofing materials, trapping it and enabling it to leak to the interior of the building. As a result, the roof structure has deteriorated in several locations and further problems associated with the concrete portions may exist. The painted flashing covering the edge of the parapet wall, are rusting and the paint is peeling off, however, they are still intact and properly flashed.

Further study of the roof structure’s condition is needed to determine the extent of structural repair or replacement needed. A structural engineer should be consulted. All layers of tar pitch surface bitumen should be taken off the roof and replaced. A new drainage system should be installed and the roof slope should be reworked to ensure proper drainage. This will minimize standing water on the roof and reduce the problem of leakage.

Foundation:

The building sits on a coastal bedrock rock base surrounded by reclaimed land in-filled with aggregate of varying sizes. The board formed concrete foundation encloses the basement and incorporates a retaining wall on three elevations. A central core composed of concrete columns rises from the basement to the roof. The floor of the basement becomes the transfer plate for the vertical column and carries the load of the structural walls and retaining walls from above. Almost half of the northern part of the basement except the structural core was excavated and backfilled again after the construction of structural members, so the retaining walls on the north of the building rest on soil rather than rock.
The foundation is in fair condition. Large diameter holes have been drilled in the walls and may jeopardize the structural integrity of the foundation. Even though it suffers from an uneven settlement, it does not show any major cracks or other critical issues. The other problems of the foundation are similar to that of the external walls, which also have holes drilled through them.

Appropriate drain tiles around the perimeter of the building should be installed to allow water to drain away from the structure rather than through the retaining walls to the interior.

Windows:

The standard brown aluminum one-over-one metal sash windows are the primary type on Sage Hall. The upper pane is fixed while the lower pane opens in an awning fashion. The existing windows are not original to the building and are believed to have been installed in 1955 during a major renovation of the building. However, the size of window openings and the window sills are believed to be original. The precast concrete wall systems incorporate paired window openings at each floor in every structural bay on all four elevations. The exception is the central bay on the east façade where a group of three windows balances the building’s front entry. All of the windows have a poured-in-place lug sill which is painted to contrast the walls. The prefabricated concrete walls were cast with the window opening but without the window sill. The concrete window sills were poured at the bottom of the window openings after the walls were erected. The west addition includes a pair of one-over-one steel sash windows on the north and east elevations. It has two windows each on its north and east elevations.

Condition and Treatment

The primary problems facing the windows in Sage Hall include missing windows and cracks at the corners of window openings. The aluminum window frames are in sound condition. Several windows are missing at the basement level and on the east and south elevations. Temporary covers have been installed, including plywood and tarps, but are not providing adequate weatherproofing. Large cracks at the corners of window openings expose structural rebar, which is rusting. The cast concrete window sills are spalling as a result of moisture infiltration. Two windows are original to the building and are in very poor condition.
The metal stile and muntins have rusted substantially and a hole has been drilled through a panel to accommodate a grey water pipe.

The window sills should be patched and reshaped to match their original forms. The cracks along the windows and the window sills are non structural, so they can be repaired with a high grade mortar cement. All damaged portions and the exposed rebar should be covered. The coverings over the missing windows in the basement should be placed outside of the opening since the edges of the openings are damaged and have exposed rebar, which should not be left exposed to the elements.

Doors:

A character defining feature representative of the Art Deco style is a centrally located entry. Sage Hall’s primary entrance is located on the north elevation and consists of a pair of full glass, aluminum doors. Historic photographs indicate that these doors are not original to the building and were believed to be replaced in 1955 at the same time as the windows.

There are three exterior doors on the building. Pair of composite doors are located on the south elevation and provide access to the basement. A single wood door with a plastic covering on the south elevation is used for an emergency exit and connects to a metal fire escape. An original half-glass, wood door is located on the south elevation. The windows are fitted with wire glass and wood muntins.

Condition and Treatment

The majority of the doors on Sage Hall are in fair condition. Problems include moisture infiltration from wind driven rain and general weathering. Gaps around the thresholds and jambs permit water to enter. The paint of the second floor door has completely weathered away and the outer layer of the composite door has deteriorated. A plastic board has been nailed on to protect the door. The plastic board is also weathered however and the nails are all rusted.

The external doors on Sage Hall should be repaired and refinished. The weather stripping should be replaced to minimize the water entering the building through gaps around the doors.

Unique features/ details:

The north elevation of Sage Hall includes several characters defining features representative of the Art Deco style. A horizontal tile element flanked by two diamond tiles is located on each of the corner bays. Historic research indicates that the historic color of the building was cream and the tiles green. Three signs are located adjacent to the primary entry and include the original bronze dedication sign, a National Register of Historic Places plaque, and a fallout shelter sign.
White painted Art Deco green tinted tile at the north entrance.

Condition and Treatment:

The tile elements are all intact and in good condition, but they have been painted. This paint should be stripped to reveal the tiles’ original color.

Interior Finishes:

Walls:

The interior walls of Sage Hall are finished with smooth and textured plaster and are painted white. Most of the interior partition walls are of textured plaster, also painted white. The interior partition walls that separate the rooms are framed in wood and finished with lathe and plaster, painted white. The interior of the exterior walls is painted concrete without parging. There are no partition walls in the basement other than one which separates the rooms and is a load bearing wall. The concrete wall surfaces in the primary entry of the basement were recently painted with grey acrylic waterborne paint. The remainder of the walls consist of concrete that has been painted white or left unfinished. Two centrally located concrete structural columns in the basement are painted white and the corners are protected by metal trim. The columns themselves taper slightly from bottom to the top.

Condition and Treatment

The interior walls are in good condition. Creating holes in the walls should be avoided. Surface plaster and paint should be maintained and repaired as needed. Plywood board on the interior of the aquarium remain intact, while the posts and the inner surface of the wall should be left exposed to the aquarium.

Ceiling:

Several ceiling materials exist in Sage Hall. The ceilings in the main entry on the first floor and the eastern classrooms consist of painted wood. The basement ceiling is concrete and painted gray. The ceilings on the second floor are covered with 1’ x 1’ acoustical ceiling tiles. The exceptions are the chemistry lab in the southeast corner and the emergency exit to the south. The ceilings in these areas are suspended acoustical tile ceilings with exposed grid suspension systems and aluminum tee runners.
Condition and Treatment

The ceiling of the second floor has considerable problems associated with the roof leaks. The acoustic panels have absorbed moisture, expanded and, in some places, collapsed. Water stains, moss and condensation are also present on the interior surfaces of the ceiling. The 1’ x 1’ acoustic ceiling tiles in the classrooms on the west side of the first floor are aged but still in good condition. In the west addition and the basement, the major problems are the cracks and holes that have been drilled through the ceilings to accommodate pipes. Large cracks are visible on the ceiling of the basement’s east room, which has exposed rebar and is potentially causing more cracks and undermining the concrete structure. The suspended ceilings in the chemistry lab on the second floor should be replaced selectively after the leakage of water from the roof is remedied.

Floor:

The basement floor in Sage Hall is a concrete slab on grade and is not finished. The first floor is finished with asbestos tiles, textured plastic flooring or painted concrete flooring. The floors in the main entry and southwest classroom are finished with 1’x1’ asbestos tiles. The northwest classroom has a raised floor that is finished with textured vinyl flooring. The eastern room on the first floor, which currently houses the aquarium, has a concrete floor painted gray. The floor was raised two inches in 1977 when the space was converted to accommodate the aquarium. The second floor of Sage hall is finished with 1’x1’asbestos tiles. 6” wood baseboard is used in all of the rooms of Sage Hall with the exception of the basement and aquarium. The generator addition has a concrete floor painted light green.
Condition and Treatment

The floor finishes on the first and second floors are in fair condition. The asbestos tiles are old and worn, but still intact. In the basement, the constant presence of water on the concrete floor may cause additional problems in the future. As water collects at the corner of the floor it may cause structural failure in the lower portion of the foundation wall.

Appropriate drains for the tanks on the first floor and in the basement should be installed so that water draining onto the floor does not jeopardize the structural integrity of the foundation and floors. All downspouts from the roof should be redirected so that they no longer drain into the basement, but away from the building. The asbestos tiles should be kept well maintained to minimize the need for replacement and asbestos abatement measures.

Unique features/ details:

The interior of the building retains the simplistic forms characteristic of its style. Therefore, the interior includes elegant and neat details on the interior doors, windows and staircase. The interior doors on the second floor are half glass, wood doors fitted with wood muntins and textured glass. The bottom rail of the doors is pierced by two metal vents with X-shaped decorative motifs. All of these doors have original metal knobs and key holes, but the integral lock units were recently replaced. A character defining feature of the interior includes the transom windows over the classroom doors. They have the same character and elements as the door, and may have come as a single unit. The transom windows have the same textured glass and the same type of window frame.
X-shape grates at the bottom of each door opens into the center lobby on the second floor.

The staircase is simply a single concrete element with metal posts and a wooden railing. The steps and posts are painted grey.

A special feature of this building is the Leffel wheel that dates to 1929 and is located in the addition on the west side of Sage Hall. This served as the hydroelectric generator for the campus. The captain wheel switch for generator’s the water supply is being used as the main water supply resource for the hatchery facility in Sage Hall.

Condition and Treatment

The doors and stairs are in good condition and no stabilization is needed. For further maintenance, the doors should be kept painted and in good repair.

The hydroelectric generator no longer functions and is rusted after having been uninstalled and left in the nearby creek for a time. Most of the important parts like the transformer, coil, and meters are still intact and in good shape, however. The captain wheel switch for the main water supply is still functioning very well.
Proper maintenance of the Leffel wheel should be performed, and with some repair could be made to function again and would be capable of supplying electricity to the campus. The elements of the generator room should be kept as they are, as the room itself has had the least alteration of the whole building.

Date Surveyed: 4/23/2004
North Elevation

East Elevation
TILLIE PAUL MANOR

Style: English Cottage/ Bungalow

Form: 1-1/2-story with a clipped gable roof

Configuration: Rectangular

Physical Description:
Tillie Paul Manor is a rectangular structure with a front-facing clipped gable roof. It is constructed of wood platform framing on a poured concrete foundation. The building is sided with wood shingles and has a wood shingle roof. The primary window type is a six-over-one double-hung wood sash. An enclosed sun porch on the south elevation serves as the primary entry. In plan, the building is divided by a double-loaded corridor, which runs the length of the building and accesses 10 rooms. The second floor consists of one large room and two smaller spaces under the roofline.

Landscape/Site Description:
Tillie Paul Manor is located to the west of the main Sheldon Jackson College campus, across Jeff Davis Drive. It sits at the crest of a hill to the north of Houk House. There is little vegetation around the building. The surrounding ground cover consists of grass that grows up to the foundation and a few small bushes grow around the sun porch and along the west side of the building. The closest notable trees are two medium-sized conifers located beyond the driveway to the north of the building. The building is located in relatively close proximity to the street and sidewalk to the east and adjoining gravel driveways to the south and north.
Condition and Treatment:

The site around Tillie Paul should be re-graded to eliminate the collection of water against the south end of the foundation. A bush growing from beneath the sun porch on the south elevation should be removed and the latticework patched by replacing any broken wood strips in kind.

Structural Description:

The building is constructed of wood platform framing that rests on a poured concrete foundation. Interior stairs leading from the first floor to the basement remain intact, but the opening in the floor has been framed-in with modern joist hangers and 2”x6” dimensional lumber. The finished basement does not extend the full length of building. A large opening into the remaining basement crawl space reveals the foundation and structure. The interior posts supporting the beams are covered with waterproofing material and the wood posts sit on original concrete footings. Beams run north to south while joists run the width of the building.

In the attic, ceiling joists are standard 2”x4” members. The roof rafters are standard 2”x6” members and support the skip sheathing of the roof. A truss is used over the second story space that is open across the entire interior dimension. This truss is comprised of 2”x6” members with 7/8” x 6” diagonal members. The diagonal members show evidence of being the same boards that were used to create the board form concrete foundation. The regular roof pitch is 6:12 and the dormer pitch is 10:12. The attic is not insulated. Skip sheathing may have been replaced, and there is evidence of roof being replaced twice in wood shingles.

Condition and Treatment

All structural members should be preemptively protected against water damage by removing sources of moisture in the basement and repairing the roof so that water does not enter the attic. Some of the skip sheathing in the roof may need to be replaced if rot has set in where it has become damp.

When interior finishes are removed from within the building (example: when the plaster and floor coverings in nurse’s room 2 are torn out) the structure underneath should be examined closely for rot and other water damage. Action should be taken to remedy such problems if they are found. This may include dehumidification or other methods of drying the interior of the structure, or replacing structural members if they are too heavily damaged.

Exterior Elements:

Walls:

The exterior walls of this building are covered in cedar shingles. Original siding, in the form of wood lap, is still present beneath the shingles. The shingles have been painted brown to match the rest of the buildings on the Sheldon Jackson College campus. There is no water table at the transition from the foundation to the siding. Two small rectangular openings on the north elevation outside the kitchen have been boarded over. They are typical of vents used to provide cold storage in early kitchen cabinets. The chimney is attached to the east wall in the corner between the main block and the rear projection. Below two windows on the west side of the south façade a wood ladder and metal handle serve as a fire escape from the upper story. The east and west walls have some unobtrusive wiring strung along their lengths.
Condition and Treatment

The shingle siding is in fair condition. Though the wall cladding is firmly affixed, weathered shingles with peeling paint are a general problem on this building. Moisture is evident in many of the shingles, particularly around the eave returns. The poor condition of the chimney and its flashing is allowing water to wash down the shingles around the chimney. The shingle siding along the east wall is showing some paint deterioration in the form of peeling and flaking. This is especially prominent along the lower half of the wall.

Shingles that are experiencing excessive dampness or rot should be removed and replaced in kind. All exterior wall surfaces should be carefully stripped of peeling paint and repainted with oil based paint, or stained according to the historically accurate finish used on other buildings on the Sheldon Jackson College campus. This refinishing will remove any water staining or efflorescence marring the shingles. Repairs to the chimney will remedy problems related to that feature.

Roof:

The main portion of the roof on Tillie Paul Manor runs north to south and has a clipped gable configuration. Wide, shed dormers project from the roof plan on the east and west elevations. In addition, a secondary clipped gable roof protrudes from the north elevation. The roof surfaces are clad in cedar shingle with metal ridge caps. Remnants of wood gutters are visible at the eaves of the dormers, but no other gutters are present on the structure. Plumbing vents penetrate the roof surface in several locations.

[Image: Southwest view of clipped gable]

Condition and Treatment

The roof of Tillie Paul Manor is in poor condition. The shingles are missing, worn and failing in many places. Large holes are allowing water directly into the attic. Ridge caps are corroded and the roof flashing is rusting and staining the fascia boards. In some places, the
flashing is missing entirely or is not properly installed, such as that around the chimney. The flashing around some of the plumbing vents appears to be loose and corroded also. There are no gutters or other drainage systems related to the roof, and the heavy water run off is encouraging moss growth on either side of the dormer as well as splash ditches around the foundation. There is a small conifer sapling growing from the roof where it meets the chimney.

The roof sheathing of Tillie Paul Manor should be replaced in its entirety. This will include allowing the skip sheathing beneath to dry and replacing any deteriorated members. Proper flashing should be installed along all connections between wall and roof surfaces and around the chimney. Corroded metal ridge caps should be replaced with historically accurate shingled ridge courses, similar to that present on the roof of the back porch. The ridge course on the roof of the back porch should be reinstalled. Wood gutters should be installed to ensure proper roof drainage. Appropriate and discrete modern gutters would be an acceptable alternative. All fascia boards should be repainted.

![Dormer, showing deteriorated paint on fascia boards and wood gutter remnant](image)

Foundation:

Tillie Paul Manor sits on a 12” to 16” board formed concrete foundation that contains a full basement. Due to the basement within, there are window openings set into the foundation on the east and west elevations. There are also horizontal openings on the west and east elevations at the southernmost end of the building. They have been boarded up and may have once served as vents for the crawl space under that portion of the structure. The foundation is painted brown on the all elevations, except under the porches, and parged in on the east elevation. At the rear of the building, on the east elevation, is a small projection that houses the entrance vestibule for the basement. The siding on this small portion of the building continues down to the grade and the foundation is not visible here.

Condition and Treatment

The foundation of Tillie Paul Manor is in good condition. Minor cracks appear at the corners of some basement window openings. The lack of gutters and downspouts on the roof to direct the water away from the building is causing water to splash against the foundation. This moisture is causing moss to grow against the foundation at the grade. Grass is growing up to the foundation and moisture that is rising from the soil line is also encouraging moss growth. The
parging is flaking off near the grade and receding due to this moisture problem. Underneath the porch on the south side of the building there is substantial ponding against the foundation. This is in part due to the ground sloping towards the foundation. Where water is making contact with the foundation efflorescence is apparent.

On the south end of the building, the slope that causes water to pond against the foundation should be re-graded to ensure proper drainage. The installment of gutters at the eaves will also help to remedy problems such as water splashing against the foundation and causing moisture to accumulate, moss growth, and deterioration of the parging along the soil line. The cracks present at the corners of the basement windows are minor and repair is not critical, though they may be patched with cementitious mortar. This should be done discretely to minimize a bad-patching appearance. The damaged parging around the windows on the east façade can also be patched with similar material. The parging should be left intact on the east side of the building and the other sides should remain unfinished, as was the case historically. A fresh coat of oil-based paint applied to the foundation will further protect it from moisture.

Windows:
The primary window type on Tillie Paul Manor consists of six-over-six double-hung wood sashes, painted white. Variations on this type as well as unique configurations are also present. The window trim is simple but decorative. It has a wide flat element with a small molding around the edges. At the basement level, windows are horizontal, 6-pane, wood awnings. Windows at the first story level are of the primary type, though some are paired and separated by a wide mullion. Dimensions vary, and some windows are fitted with textured glass panes. In the second story dormers, windows consist of 6-pane, wood, fixed windows.

Condition and Treatment
The windows on Tillie Paul Manor are in fair condition. The primary problem is deterioration of paint on the frames and sashes. The window putty is failing on many windows. At the basement level, some windows are experiencing sever rot in the sills with vegetation growing from the heavily deteriorated wood. A few have been boarded up; some retain their sash with a board covering it from the inside, while the openings of others are simply filled with
a single plywood board. Throughout the house, metal L-brackets have been installed on the lower corners of the bottom sashes of some windows to reinforce the structure of the sash. The glazing in a few windows is broken. Various windows on the second story do not appear to fit their frames properly. The sashes lean inward and are held in place by calking.

The window sashes, window frames and trim should be stripped and repainted and any deteriorating glazing putty should be reapplied. For those windows with broken or cracked glazing, the glass panes in question should be replaced in kind. In windows that exhibit more serious deterioration, reinforcement or replacement should be undertaken. Metal L-brackets like those already present on some windows can be used to strengthen joints temporarily, though they should be painted to match the sash so as not to be obtrusive. When possible, stiles, rails and other frame or trim pieces that are seriously rotted or decayed should be replaced in kind.

Doors:

Tillie Paul Manor has two exterior doors, both on the east elevation, as well as a door providing access to the basement. All are made of wood and painted white. The southernmost entry door, which leads into the sun porch, has four panes of glass in the upper half and a single panel in the lower half. Its hardware is modern and a metal kick plate has been installed on the lower right corner of the door, perhaps to reinforce existing damage to the wood. The door on the rear porch and the door into the basement have four panes of glass in the upper halves and three horizontal panels in the lower halves. Both have retained their original hardware.

Condition and Treatment

The exterior doors on Tillie Paul Manor are in poor condition. There is uniform paint deterioration on all doors. The door into the sun porch has a metal kick plate installed on the lower left corner of the door and up the lock stile to the knob, perhaps to reinforce the structure
of the door in that location. The doors to the back porch and basement are no longer square in their frames. The hardware is rusty, however, all four panes of glass are intact on all doors.

The doors, doorframes and trim should be stripped and repainted and any deteriorating putty around the glazing should be reapplied. Stiles, rails or other frame or trim pieces that are seriously rotted or decayed should be replaced in kind. This may be the case for the door into the sun porch so that the metal plate at the lower left corner may be removed. For those doors that retain their original hardware, the hardware should be refurbished; stripped of paint and treated for rust, as well as have their mechanisms lubricated. Modern hardware may need to be installed on exterior doors to ensure the security of the building. This should be done with hardware that is as aesthetically compatible with the original hardware as possible. Reproduction historic hardware may be an option for such a case. The frames of the back porch and basement doors should be manipulated so that the doors fit the frames properly again. Remedy the settling of the back porch may fix this problem in the case of the back porch door.

Porches/Entries:

Tillie Paul Manor’s primary entry is accessed by non-historic, pressure treated, wood steps on the east side of the sun porch. Wood posts set on concrete footings support the porch. The concrete footings have been installed on top of what appears to be original concrete footings. A lattice skirting encloses the underside of the porch on the south elevation and is comprised of non-historic lattice on the west side of the porch and historic lattice on the east side. This historic lattice is made of smaller wood strips spaced more closely together and intersecting at a steeper angle. The porch is sided with cedar shingles and has a hipped roof covered with wood shingles and a metal ridge cap. A continuous band of windows separated by thin mullions wraps around the porch.

A small, secondary entry porch is accessed by pressure treated wood steps on the north elevation and is supported by wood posts that bear directly on the soil. The porch is enclosed by historic latticework skirting and is sided with cedar shingles. A hipped roof clad in cedar shingles and a shingle ridge cap covers it.

Condition and Treatment

On the sun porch the siding is experiencing paint deterioration and the shingles are separating at the corners and exposing the lap siding beneath. The rusting flashing at the lower edge of the roof has stained the fascia board and the paint on the fascia is also deteriorating. The wood shingles on the roof are slightly worn, but the ridge cap is in excellent condition and looks
new. The latticework enclosing the underside of the porch is broken in some places, particularly where there is a bush growing through it from under the porch. The windows on the porch exhibit general paint deterioration, especially on the sills and trim below the windows. Some of the glazing is cracked and the putty is failing.

Both posts supporting the rear porch rest on the soil with no concrete footings. They are deteriorating at their bases and may be contributing to the settling of the porch and the subsequent slope of the floor and deformation of the doorframe. The latticework enclosing the underside of the porch is coming apart and moss is growing along its base. The roof consists of worn wood shingles and the ridges are covered with a ridge course that is missing many shingles.

Both porches should receive the same wall, roof and window stabilization treatments as the rest of the building. The bush that is growing through the lattice from under the sun porch should be removed and the lattice repaired. The posts under the back porch should be set on concrete footings and while doing this the north side of the porch should be raised a few inches to make it level. All connections should be checked after doing this to ensure proper fit against the side of the house and proper alignment of the door and doorframe. The steps leading up to the doors of both porches may be rebuilt or refinished in such a way as to make them more historically accurate or aesthetically compatible with the building.

Unique features/Details:

An external chimney at the northwest corner of Tillie Paul Manor is constructed of brick and terminates with a corbelled cap.

Condition and Treatment

The chimney is in poor condition and has structural problems. From the north, the twisting of the chimney and the way it leans away from the house is pronounced. It is fitted with two wood boards on the east and west sides that are bolted together and act as a splint; however, they provide little structural reinforcement and are not connected to anything that will support the chimney. The bricks of the chimney are spalling, pointing to the incompatibility of the bricks and mortar. Ferns are growing from the chimney cap and moss growth can be found elsewhere on the chimney. The flashing between the chimney and the adjoining roof is loose and not installed properly. The chimney is a general weakness in the structure of Tillie Paul Manor and is presenting multiple instances of leaking and water infiltration.

The chimney should be stabilized more effectively, using larger wood splints that cover more area and cables to attach it to the roof. Eventually, the chimney may need to be rebuilt. A structural engineer or chimney mason should be consulted for recommendations. Reconstruction should be done so that the new chimney is identical to the original chimney. It should be constructed with lime mortar that is compatible with the bricks so that spalling does not occur. It will need to be straightened and made plumb. All flashing and connections between the chimney, roof and walls should be secure so that the current problem of leaks and water infiltration does not reoccur.

Interior Finishes:

Walls:

The majority of the interior walls of Tillie Paul Manor are made of lath and plaster. The baseboards that are found throughout the building consist of simple flat boards with a strip of
quarter round molding abutting them at the floor level. In some places the original walls have been covered with wallpaper, borders, or a wall covering with a textured brick-like pattern. In all cases, even where wall coverings exist, the walls have been painted with latex paint. In the basement, all the walls are made of poured concrete, aside from a plywood and stud partition erected at the west side of the basement. On the second floor, the added partition that forms the upstairs bathroom and bedroom is made of gyp board.

![Wall with peeling paint and damaged plaster](image)

Condition and Treatment

The interior walls of Tillie Paul Manor are generally in fair to poor condition. The overall problems include cracking plaster and peeling paint, though some more serious problems exist. In places where heavy moisture infiltration has occurred, the plaster is crumbling off the walls, exposing damp lath. Mildew has formed on some walls. A recent layer of latex paint has been used on all interior walls and in places where moisture is coming through the plaster is cracking and the paint is peeling in large patches. Walls behind furnaces and stoves are covered with brittle asbestos panels.

The minor cracks in the plaster walls of most rooms should be patched with a compatible plaster material. Any existing wallpaper should be removed. In the places where plaster has come detached from the lath or is heavily damaged by water it should be removed so that all remaining material is unaffected. The lath should be inspected for rot, replaced if needed or dried thoroughly and patched with a compatible plaster material. In some rooms, damage may be so extensive that this may mean replacing the entire wall surface. This may be done with gypsum board with a plaster finish, which has a compatible appearance to the historic lath and plaster, but is more feasible to install and is fire retardant. In places where mildew mars the walls, it should be washed off with a gentle cleanser (soap and a damp sponge). The area should be allowed to dry and checked for further moisture infiltration. A Hazardous materials
assessment should be performed to deal with the asbestos panels. They should be removed from the walls in a safe manner that complies with asbestos abatement guidelines. Peeling paint should be stripped, and all walls should be repainted.

Ceiling:

The ceilings throughout the building, including the basement, are finished with lath and plaster and have been painted with latex paint. Non-historic light fixtures are installed on most ceilings.

![Ceiling, showing damaged plaster and damp lath](image)

Condition and Treatment

The ceilings in Tillie Paul Manor are in fair to poor condition. The overall problems include cracking plaster and peeling paint, though some more serious problems exist. In places where heavy moisture infiltration has occurred, the plaster is crumbling off the ceilings, exposing damp lath. Mildew has formed on the ceiling in some rooms. A recent layer of latex paint has been used on all interior ceilings and in places where moisture is coming through the plaster is cracking and the paint is peeling in large patches.

The minor cracks in the plaster ceilings should be patched with a compatible plaster material. In the places where plaster has come detached from the lath or is heavily damaged by water it should be removed so that all remaining material is unaffected. The lath should be inspected for rot, replaced if needed or dried thoroughly and patched with a compatible plaster material. In some rooms, damage may be so extensive that this may mean replacing the entire ceiling surface. This may be done with gypsum board and a plaster finish, which has a compatible appearance to the historic lath and plaster, but is more feasible to install and is fire retardant. In places where mildew mars the ceiling, it should be washed off with a gentle cleanser (soap and a damp sponge). The area should be allowed to dry and checked for further moisture infiltration. Peeling paint should be stripped, and all walls should be repainted.

Floor:

The original floors in Tillie Paul Manor consisted of 3 1/2” tongue and groove wood boards on the first floor and somewhat wider tongue and groove wood boards on the second floor. This original floor still exists throughout the building, though it was later covered in many
places by asbestos tile. Currently, modern carpet and vinyl flooring have covered both the original board floor and asbestos tile floor. In the basement, the floors consist of poured concrete.

Floor at top of stairs, showing original boards under asbestos tile

Condition and Treatment:

The original floors in Tillie Paul Manor are likely in relatively good condition because subsequent layers of non-historic flooring have protected them. In the basement, there is water on the floors. On the first floor, the modern carpeting in most rooms is damp and in some places, the asbestos tile underneath the carpeting is cracked and crumbling. The vinyl flooring is buckled and peeling at the seams. In places where the original board floors are visible the paint is worn, though the wood is in sound condition.

All non-historic flooring in the building should be removed. This will likely remove a large source of moisture inside the structure. Carpets should be disposed of and the asbestos tiles beneath should be removed in a safe manner that complies with asbestos abatement guidelines. The original wood floors beneath should be inspected for water damage and rot. Any affected areas, or areas where the original flooring no longer exists, should be repaired or replaced in a manner compatible with the original floors. The floors should be painted with non-latex paint, as they were originally. Standing water on the basement floor should be removed and the source of the water identified and repaired.

Windows:

There are two interior windows in Tillie Paul Manor that do not reflect those described as part of the exterior inventory. Both take the configuration of single hung windows with large, wood, single pane, movable, lower sashes and narrow, 8-pane, fixed sashes above. The lower sash on the window in patient room one is fitted with textured glass. The muntin profiles on all windows of the first floor are the same. On the second floor, window muntins have two standard profiles.
The interior of the windows in Tillie Paul Manor are in good to fair condition, needing only some repair. None of the windows operates smoothly, though many simply suffer from lost sash weights or being painted shut. In the basement, most of the windows have been fixed in place with nails and boarded up, though they may have been operable at one time.

Hardware should be repaired, lubricated, or replaced with appropriate equipment, including sash weights and cords on all double-hung windows. Proper operation of the windows and smooth movements in their tracks should be insured. Parting strips may need to be replaced in some cases to make this possible. On the second floor, dormer windows that do not fit their frames should be removed and their edges shaved down carefully so that a proper fit is ensured. They should then be secured in place by appropriate means.

Doors:

The interior doors in Tillie Paul Manor are primarily wood panel doors, with some exceptions. Some have retained their original hardware of various types (including glass knobs), while others have been fitted with modern equivalents. The doors ranging the length of the hall on the first floor are primarily single panel wood doors with transoms above. Exceptions include two non-historic hollow core doors between the operating room and dispensary.
Typical interior door with transom

Condition and Treatment

The interior doors in Tillie Paul Manor are generally in fair condition. The damage they exhibit is the result of hard use. Many do not retain their original hardware and have peeling paint. Damage consists of splitting wood along the rails, and panels that are separating from the rails and stiles. The hollow core doors are in good condition, but are not in keeping with the historic doors in the rest of the building.

All interior doors should be stripped and repainted. Those doors suffering from damage should be repaired or replaced in kind. Repair may include replacing deteriorated or broken rails or stiles, and perhaps reshaping or gluing warped wood panels. For those doors that retain their original hardware, the hardware should be refurbished; stripped of paint and treated for rust, as well as have their mechanisms lubricated. Doors that are missing their hardware or are fitted with modern hardware should be refitted with equipment that is more aesthetically compatible with the remaining historic hardware. The hollow core doors should also be removed and replaced with wood single-panel doors that are more compatible with the historic doors in the house.

Porches/Entries:

The original lap siding of the building is still visible on the north wall of the enclosed sun porch on the south elevation. The other walls are covered with 3 1/2” grooved bead board. The ceiling is covered with the same grooved boards as the walls. The floor of the porch is made of 3 1/4" tongue and groove decking that is painted black.

The walls and ceiling of the back porch are covered in 3 1/4” grooved bead board, similar to that of the sun porch. The floor of the porch consists of 4” tongue and groove boards.
Condition and Treatment:
The floors in the sun porch are worn and the boards nearest the entry are damp from water seeping in under the door. The walls and ceiling are in good condition. The doors into the hall are in good repair, though they have modern hardware and still bear the markings of the original hardware. The back porch exhibits overall dampness that has encouraged mildew growth on all surfaces.

Weather stripping should be installed on the underside of both porch entry doors, so that water does not seep in on the wood decking. The decking, itself, should be repainted. Walls and ceilings need little repair, though they would benefit from a fresh coat of paint. The doors from the sun porch into the hall should be fitted with hardware that matches what was there originally – that is, vertical handles and dead bolts at the top and bottom, rather than modern knobs.

Unique Features/Details:
The stairs leading from the first floor to the second are made of wood with a wood banister made of simple square uprights and a rounded handrail. The newel post consists of a large square post. The treads of the stairs have rounded edges and are painted black.

There is a variety of built-in cabinetry on the first floor of Tillie Paul Manor. Most is made of bead board with original cabinet hardware and features overhead glass fronted cabinets in the dispensary.

In the basement, the furnace dates to 1950’s and the water heater to approximately 1994. Both are intact though unused at this time. The house was retrofitted for electricity, with wires running on the exterior of the walls within concealing coverings. The remnants of knob and tube wiring are present in the attic. Original radiators are still present in most rooms.
Condition and Treatment

The stairs from the first floor to the second are in good condition. They exhibit wear and deteriorating paint on the treads, newel post and banister. The stairs should be repainted with dark treads, as is historically accurate.

The built-in cabinetry throughout the house shows wear and many of the cabinets are painted shut. All built-in cabinets should be freed from being sealed shut by paint and repainted after this is done. Cabinet hardware should be stripped of paint, refinished, and the mechanisms lubricated.

All HVAC and electrical systems should be assessed and proper operation ensured. Faulty wiring and other problems should be fixed immediately.

Modifications:

Exterior:

The shingle siding is a later addition to the building. The presence of lap siding underneath the shingles, as well as that still exposed inside the south sun porch is evidence of this change. The change was likely made to create a similarity between Tillie Paul Manor and the other buildings on the Sheldon Jackson College campus.

Interior:

Minor floor plan variations were made on the first floor. This mainly consisted of sealing existing closets located between rooms, which once opened onto the central hall, and re-opening them into the bathroom spaces behind to be fitted with shower stalls. In addition, modifications were made to the interior basement steps, which were floored over and turned into a closet. The second floor is almost completely in its original configuration, though the addition of a bathroom in the northern portion of the plan, created a secondary bedroom space behind the stairs.

Survey Date: 4/27/04
TILLIE PAUL MANOR ELEVATIONS
WHITMORE HALL

Style: Craftsman

Form: Two-story structure with hipped roof

Configuration: Rectangular

Physical Description:
Whitmore Hall is one of the Ludlow and Peabody campus buildings built in the Craftsman style. The building is rectangular in plan and two stories high, with a small addition on the north elevation. The dormitory has a hipped roof with dormer vents at the west and east ends and a projecting clipped-gable roof over the entry on the south elevation. The exterior is covered with cedar shingle siding on the first story, which changes to vertical board and batten siding at the base of the second story windows. The board-formed concrete foundation is painted brown, as is the shingle siding.

Landscape/Site Description:
Whitmore Hall is located to the east of Allen Hall, on the north side of the central quadrangle. The main entrance to the dormitory faces the quad and Sitka Sound to the south. The Power Plant and Laundry Building is located to the east of the dormitory and Fraser Hall is located to the southeast. Two large hedges flank the main entrance to the building and small bushes line the remainder of the south elevation and wrap around the west and east elevations of the dormitory. A handicapped-access ramp parallels the western half of the south elevation. A rectangular, wood building sign is located in the flowerbed on the east half of the south elevation. A concrete walkway runs along the south elevation of the dormitory. A second
concrete walkway parallels the west elevation and wraps around to the north elevation, connecting with a gravel road that leads to the Rasmuson student union building. To the east, a gravel road divides the open space between the dormitory and the Power Plant and Laundry Building. A fire hydrant and a modern phone booth are two distinct, non-historic features on the site. They sit near the west elevation of the building.

Condition

The landscape is in fair condition. The vegetation needs pruning. The sidewalks and paths are in good condition.

The landscape around Whitmore Hall should maintain its current appearance. Positive drainage away from the foundation of the building should be ensured. Measures to create positive drainage may need to be taken to ensure that water does not settle at or near the building foundation. The bushes, hedges, and shrubs should be maintained and pruned so that they do not make contact with the structure. Moisture trapped by vegetation will increase the rate of building deterioration.

Structural Description:

The wood, platform-framed dormitory sits on board formed concrete foundation. A central, 5-1/2” x 11” beam, supported by 12”x12” concrete piers at 9’ on center, supports the first floor 1-7/8” x 11” joists, placed 16” on-center.

There are several wood piers located among the concrete piers throughout the crawl space. The floor joists run east to west and bear directly on the concrete foundation at the perimeter. There is a large quantity of construction debris in the crawl space.
A simple heavy-timber truss is located in the west side of the structure and runs north to south, spanning the entire width of the building. The rafters measure 2"x 8" and vary in spacing from 16” to 21” on-center. The rafters terminate at the 2”x 6” top plate. Every other rafter has a 2”x6”collar tie. The ridge beam measures 2”x 10”. The exterior walls are made of 2” x 6” stud platform construction.

Condition and Treatment

Heating and plumbing services have penetrated the foundation wall and persistent leaking has begun to jeopardize the structural integrity of the wall. Cracks are also evident. The addition on the north elevation has a large section of missing shingle siding. The studs are exposed studs and appear to be deteriorated.
A structural engineer should analyze the structure for its integrity and its ability to adequately carry loads. There are several methods to remedy the structural issues of Whitmore Hall. An inexpensive gauge should be placed on the cracks in the foundation to measure the growth of the cracks. The sections of foundation penetrated by heating and plumbing pipes should be analyzed for proper methods of reinforcement and load distribution. The gutters should be repaired and replaced as necessary to ensure proper water removal from the building.

Exterior Elements:

Walls:

The wood framed walls bear on the board-formed concrete foundation and are clad in cedar shingles. A water table made of wood strips spliced together with metal plates over the joints establishes a lower boundary for the cedar shingle siding, which rises to the base of the second story windows. A horizontal band establishes the transition from shingles to the vertical board and batten siding of the upper story. The banding is made up of three dimensions of wood board, including a simple rectangular 1” x 2” piece with a concaved molding underneath and wood dentils located at even intervals. At even intervals, there is a wood block, or dentil, located under the band that interrupts the molding piece. At the front projection there is a slight flare in the shingle wall above the recessed porch. The water table, cedar shingles and the horizontal banding are painted brown, while the window sashes and the board and batten siding are painted white. All elevations have wiring strung along the walls. It is painted brown or white so as to be unobtrusive.

Condition and Treatment

The exterior walls of Whitmore Hall are in fair condition. Problems include peeling and chipping paint on all wall surfaces. Several sections of loose or missing shingles, minor checking in the board and batten siding, missing battens, checking in the dentil details and
deterioration of the watertable trim and moldings are also issues. The watertable on the north elevation is deteriorating as a result of water exposure from the failed gutter above.

The south elevation is extremely weathered. The watertable is in fair condition. The trim that meets the foundation is beginning to deteriorate. The wood trim is deteriorating, cracking, checking, and cupping. The wood shingles are extremely weathered and are deteriorating or missing in several sections. The horizontal banding is in fair condition. The board and batten is in fair condition. Several battens are missing or pulling away from the wall.

The west elevation is generally in good condition. The wood shingles, window trim, and board and batten siding are experiencing paint deterioration. The watertable is in fair condition. The bottom molding that meets the foundation is missing. The banding shows signs of weathering, mainly on the dentils. The fire stair mounted to the west wall is in good condition.

The north elevation is generally in fair condition. The shingle siding is in poor condition. The shingles are cupping, sections are missing, and the paint is peeling. Severe water damage and rot is occurring at the corner where the addition meets the main wall. The watertable at the corner is completely rotten. The remaining section of the watertable is in fair condition, as is the wood banding and board and batten siding. Several battens are loose or pulling away from the wall.

The east elevation is in good condition. The watertable is in good condition with one small gap at the foundation that could lead to animal infestation. The shingles and board and batten are intact. The banding has been replaced. The fire stair is in good condition.

Appropriate removal and replacement of any material should be done so as not to impact the structure or the interior walls of the building. All loose, deteriorated, and missing shingles should be replaced in-kind. All missing battens should be replaced. The banding should be patched and replaced as necessary. The exposed and deteriorating studs on the north addition should be replaced and covered with shingle siding to prevent weather infiltration. The deteriorating water table on the north elevation should be repaired, however, only after the gutters above have been repaired. Board and batten siding should be replaced where necessary using fasteners identical to the original. All wall surfaces should be repainted.

Roof:

The hipped roof has a slope of 7:12 and is covered with composition shingles. The rafters range from 16” on center to 21” on center. The 2”x 6” rafters terminate at the top plate, which confirm that the notched rafter tails are purely decorative.
The clipped gable roof has two decorative brackets that are character-defining features of Ludlow and Peabody buildings.

The original cedar shingles are visible behind the skip sheathing when viewed from the attic. The valleys have metal flashing. There are dormer vents on the east and west sides of the roof. A metal gutter system has replaced the original gutters, which were probably made of wood.

The northeast addition to Whitmore Hall has a hipped roof with a varying slope. It joins the original roof at the eave. The eave overhang is approximately 24”.

Condition and Treatment

The roof is in fair condition. The gutters are full of debris and are damaged in several places. The down spouts drain at the base of the foundation, causing moisture problems at the foundation. The exposed end grain of the decorative brackets has deteriorated, however, the fascia boards are in fair condition. The composition roof shingles are currently in good condition, but restoration of the wood shingle roof is suggested. The gutters should be cleaned often and repaired where damaged.
Foundation:

The foundation is made of board formed concrete covered with parging. There are several rectangular vent openings for the crawlspace on each elevation. Some of these vents are covered with plywood, while others have wire screen over them.

![Foundation](image)

Condition

The foundation is in fair condition and structurally stable. Several cracks appear at the corners and throughout the length of the foundation and are caused by the leaking of heating and plumbing pipes penetrating the foundation wall.

The foundation should be fitted with simple measuring devices that will measure any change in the width of cracks. If the cracks are progressive, the foundation should be assessed by a structural engineer. If the cracks are not growing, they should be patched with a non-shrinking cementitious grout. The site around the building should be assessed for positive drainage (out and away from the building). If needed, measures should be taken to re-grade the site and ensure that water does not settle near the building. In locations where pipes and other utilities penetrate the foundation, openings should be monitored for cracking and deterioration.

Windows:

All of the windows on Whitmore Hall are double-hung wood sash. Most of the first floor windows are twelve-over-twelve. The second story and attic windows are six-over-six, double-hung, wood sash windows. All windows have $\frac{3}{4}''$ x $5 \frac{1}{2}''$ wood trim pieces. The projecting sills measure 2” x 6” and are made of wood. Decorative hoods surmount the windows of the lower story.
Condition and Treatment

The window sills are showing early signs of deterioration. The window trim is poor condition.

The windows are in fair condition, but few operate smoothly. Issues facing the historic wood windows include: broken panes and muntins, deteriorating glazing putty, failing and inappropriately repaired sash joints, deteriorated window trim, and peeling paint.

Complete window restoration should occur. A full restoration would make all sashes operable, reinforce all joints, and maintain historic character defining features. The windows and trim should be stripped and repainted. All missing panes should be replaced. The missing and failed glazing putty should be patched and replaced. Windows will need to be removed from the building for repair. When reinstalled the windows and trim should be painted regularly. All repairs should result in water tight and weather resistant windows.

Doors:

The main entrance, on the south elevation, comprises a pair of solid core wood doors with large single panes of glass in the upper halves. They are surmounted by a large 16-pane transom window. In the center of the west and east elevations are two fire doors. The north
elevation has one wood door that serves as a secondary entrance to the computer room. The north addition has two wood doors on its east side, one on each floor. The exterior doors are not historic. All but two doors are modern fire doors. All the doors are painted brown. The main entrance doors on the south elevation retain the original wood trim, with a header detail that is similar to the moldings on the window headers. All the door hardware has been replaced.

Main entrance doors

Condition and Treatment

The doors are in fair condition. All doors show signs of general wear and tear.

The rehabilitation of the main entrance doors is suggested. The doors should be painted regularly and the hardware should be maintained in working order. The hardware should not be painted.

Porches/Entries:

The porch walls are covered with wood shingles and have 1”x 4” wood baseboards. The square porch posts are wood and have a simple capital and base. Segmental arches span the space between columns. The railing is not original, and has been raised on the west side of the porch. A handicapped-access ramp parallels the south elevation of the building and enters the recessed porch its west end. The ramp is made of pressure-treated wood.
Two thirds of the concrete floor was raised with a skim coat of concrete to accommodate accessibility standards. The concrete porch slab meets three concrete steps that lead down to the sidewalk. The porch has a ceiling of painted tongue and groove boards. There is one light fixture mounted in the center of the ceiling.

The east and west elevations both have small, centrally located porches. These porches have gable roofs and are built over original concrete stoops. Both porches have wood decking, wood railing, and wood columns.
The columns of the east porch sit on new concrete footings, while the columns of the west porch connect directly to the historic concrete steps. The roofs are covered in composition shingles and there is wood collar tie located under the gable. The rafter tails have the same notched detail as the rafters on the building. The fire escapes above the porches on the east and west elevations are made of wood.

Condition and Treatment

Overall, the front porch is in fair condition. All surfaces of the recessed porch have minor paint deterioration. The porch columns are rotten at the base and have been patched. The casings are pulling apart from the structural column. The concrete steps have settled substantially and some are spalling.

![Deteriorating column on recessed porch](image)

The segmental arched lintels are in good condition. The quarter round molding is pulling away from the wall and minor cracking and checking is occurring at the ends of the arches. The side entries are in good condition. All porches have minor paint deterioration. The front porch is a character defining feature of the campus. Its restoration and rehabilitation is necessary to ensure the historic integrity of the campus. The source of any water damage should be determined and remedied before repairs are made. The columns should be patched and the deteriorated casing and base moldings should be replaced in-kind. All other rotten and deteriorated elements should be replaced in-kind. Cracks and checks in the wood should be patched or puttied to prevent moisture infiltration. The concrete steps should be realigned and the ground underneath should be properly reinforced to prevent future settling. The steps may need to be re-poured if cracking and spalling is too severe. All porches should be painted regularly. The original side entry configurations should be determined from historic photographs and drawings. The concrete stoops should be restored and any non-historic material removed. In the interim, the wood porches should be maintained and receive a regular coat of paint.

Unique features/Details:

The truss in the west section of the attic is unique to this building’s structure. The truss provides the structural support for the span of the open dorm room space that was originally located on the west half of the second floor. On the exterior, the character-defining features for all of the Ludlow and Peabody buildings are expressed on Whitmore Hall. Those features
include the flared wall above the porch, the combination of shingles and board and batten siding, notched rafter tails, and decorative wood brackets.

Condition and Treatment

Generally, the features are in fair condition. Several features are weathered and showing signs of water damage. The decorative wood brackets are deteriorating due to moisture and many of the wood details are cracked and checked.

Despite the obsolete structural purposes of the attic truss, it should remain in place incase a full interior restoration, including the opening of the second floor dormitory space, occurs. The notched rafter tails are an important feature and should maintain a protective coat of paint. The decorative wood brackets should be replaced in-kind and be painted regularly.

Interior Finishes:

Walls:

Most of the interior walls are finished in drywall, with the original lathe and plaster underneath. The first floor lobby walls are drywall painted white with a 1” x 4” beige vinyl baseboard. The entry hall, computer room, staircase and all second floor spaces have a 47” wainscot with 16” vertical panels capped by a metal trim. The wainscot appears to be a modern addition. The walls in the east half of the second floor have a smooth finish, new natural finish wood window trim, and 1” x 4” vinyl baseboard. The walls in the west half of the second floor have a textured finish and are painted white, with a vinyl baseboard.

The second story hallway walls are finished with plasterboard, a 47” wainscot with 16” vertical panels capped by a metal trim, and 2-1/2” wood baseboards with a quarter round molding at the top. The rooms off the hallway are finished with drywall and painted white. The original lathe and plaster wall treatment is beneath the gypsum. All of the rooms on the second floor have exposed electrical conduits. The bathroom walls are finished with drywall.
The attic apartment walls have wainscot and plywood panels. The walls follow the slope of the roof. The wainscot measures 44 ½” in height. The north apartment wainscot is composed of tongue and grooved boards with a 3 ½” exposure.

The south apartment wainscot is composed of tongue and groove boards with a 1 ¾” exposure. The plywood panels vary in size and have 1 ¼” wood strips covering the joints.

Condition and Treatment

The interior walls are in good condition. The walls show minor wear and tear. The wood trim on the second floor is in good repair. The wall surfaces should be kept painted and well maintained. It is recommended, however, that all non-original wall materials (drywall, etc.) be removed to expose the original lath and plaster walls beneath. The remaining historic finishes should be maintained and the walls should be painted regularly.

Ceiling:

The ceilings are finished in gypsum board with the original lathe and plaster underneath. The lobby ceiling has a dropped ceiling of acoustic tiles. Above the tiles, drywall is attached to the original lathe and plaster ceiling. 2” x 4” furring strips support the dropped ceiling. The east half of the dormitory has an acoustic tile dropped ceiling. The tiles show water damage in several spots. The west half of the dormitory has a drywall ceiling with a textured finish, painted white.

The second floor ceiling is made of drywall installed over the original lathe and plaster. The ceilings have florescent light fixtures and modern exit signs. The ceiling has minor cracks at the drywall seams.

The attic apartment ceilings are composed of various sized plywood panels. The joints of the panels are covered with 1 ¼” wood strips. The ceiling of the north apartment is painted white and the ceiling of the south apartment has a natural wood stain.

Condition and Treatment

The first and second floor ceilings are in good condition. The north attic apartment shows signs of water damage.
The surfaces should be kept painted and well maintained. It is recommended, however, that all non-original ceiling materials (drywall, acoustic tile, etc.) be removed to expose the original lath and plaster ceilings beneath. Light fixtures should be replaced with historically accurate fixtures. Fire suppression systems should be non-intrusive in all interior spaces.

Floor:

The first floor lobby is finished with a blue carpet installed over tongue-and-groove boards. The restrooms have vinyl floor covering. The wood stairs are covered with carpet and have metal treads. The west and east halves of the dormitory have carpet installed over the original tongue-and-groove flooring.

The second floor hallway is carpeted. The same carpet and 2½” rounded-top edge, wood baseboards exist in all the dorm rooms. The bathrooms are finished with vinyl floor covering.

The attic floor consists of various sized planks and tongue-and-groove boards running north to south. Some of the floor is not covered and consists of the exposed floor structure with batten insulation between the joists. These joists are approximately 16” on center. The floors of the attic apartments consist of tongue-and-groove boards running north to south. The attic hallway floor has tongue and groove boards running east to west.

Second floor ceiling joist looking from the attic
Condition

The floors are in good condition and show only minor wear and tear. The tongue and groove floorboards of the main floors should be restored, through the removal of all non-historic materials (carpet, vinyl tile, etc.) Once restored, the wood floor should be well maintained. In high-traffic areas, it may be prudent to retain the protective covering of modern floorings for the time being.

Doors:

The majority of doors on the first floor are solid core wood doors. A five-panel, wood door with original hardware exists as the entrance to a storage room and may be original. The second floor doors are wood and measure 31 ¾” x 80”. The doors have metal locking knobs. The fire doors have a metal veneer over solid core wood doors.

Condition and Treatment

The doors are in fair condition. All doors show signs of wear and tear. The hardware should not be painted and should be kept in working order. The solid core doors may not be original. It is recommended that they be replaced with wood panel doors like that found on the storage room and those found in other Ludlow and Peabody buildings on campus.

Unique features/Details:

A wood staircase exists in the entrance lobby. It is covered with carpeting and the treads have a metal edge. The banister has chamfered corners, which remain intact along with the solid paneled railing.
Condition and Treatment

The staircase is in good condition. The carpet should be removed from the treads to reveal the original wood finish. Great care should be taken to maintain the current condition and integrity of the wood work of the stairway.

Modifications:

Whitmore Hall has had numerous modifications since 1910. The original design was symmetrical in plan. The western staircase was removed, however. The original finishes have either been covered up or removed and modernized. The first floor spaces have been rearranged to accommodate modern uses. Changes have included the addition of walls, new interior openings, new doors and new finishes. On the exterior, the panels below the first floor windows have been removed. Two external fire stairs have been added, one to the west elevation and the second to the east elevation. A small two-story addition was added to the north elevation.

Survey Date: 04/24/04
WHITMORE HALL ELEVATIONS

North Elevation

Southeast Corner Elevation

South Elevation

West Elevation
MAINTENANCE PLAN

The purpose of this maintenance plan is to explain the importance of maintaining the historic buildings on the Sheldon Jackson College campus and to provide an easy reference guideline for doing so.

In order to maintain the character of this National Historical Landmark, all the significant characteristics of the buildings must be preserved and continuously maintained. Many studies have been done comparing the cost of maintenance and major issues of renovations. The results are unanimous and show that the cumulative cost for maintenance is much lower than the cost to renovate a building after continuous deterioration that could have been fixed at an early stage.

Conscientious maintenance can influence the overall harmony of the campus with itself and with the adjacent neighborhood. It can encourage a long lasting history of a complete and functioning campus, and also continue its importance as a landmark of Sitka. To do this, however, proper maintenance guidelines are needed. The Secretary of Interior’s Standards for the Treatment of Historic Properties provides complete and concise methods for repairing and refurbishing historic buildings, without detracting from the historical elements. Therefore, in following these guidelines and in conducting all maintenance work, the standards should be followed.

This maintenance plan has been designed to list tasks to be conducted on a periodic basis. The schedule should be used to organize future routine maintenance work:

Annually:
- Fire suppression system should be checked for proper operation. Any faulty equipment should be replaced.
- Buildings should be repainted. Since the buildings are located in a coastal area, a yearly repainting of the exterior is needed, as the paint and wood or concrete beneath will quickly deteriorate in the harsh saline environment. Latex paint is recommended, with oil paint as a top coat.
- Paint removal should be performed every few years. If too many layers of paint build up, they will not able to withstand the shrinkage of an additional coat as it dries and will crack and flake.
- Walls should be patched and replastered. Any cracks, holes, etc. in the walls should be repaired. Care must be demonstrated in working with interior surfaces, so that the building may retain its appearance, e.g. the wood trim around the windows and doors must have the same "reveal" as before and not be marred by modern plaster work.

Every 6 Months:
- Check the roofs for leaks. Moss should be removed from the roof surfaces, while leaves and debris should be cleared from gutters. Downspouts should be kept clear and functional.
- The exterior of the buildings should be cleaned. This includes cleaning off dirt and removing stains from the window trim, doors and shingles.
- Vegetation should be removed from buildings. Check for the growth of any plants on the
buildings’ exterior envelopes. Intrusive branches and roots from nearby plants should be cut to avoid any damage to the buildings.

- Check the condition of heating and electrical systems. Determine the condition of each radiator and electrical outlet to avoid fire risks.

Monthly:

- Check the exterior of the building for cracks and damage and repair any faults immediately.
- Check for positive drainage around the building to avoid flooding of basements and crawl spaces and other intrusive moisture issues.
- Check heating systems, and ensure the proper functioning of steam lines. Maintain boilers.

Weekly:

- Check plumbing, e.g. water supply, grey water drains, etc. Look for any damage or corrosion on the piping that may cause leakage. Any leaks should be stopped immediately.

Daily:

- Monitor mechanical systems, checking all electrical appliances, lighting in public spaces, emergency exit signs, ventilation systems and cooking devices.
- Check the condition of fire escape routes, including the condition of floor surfaces, fire resistant materials, escape staircases, emergency door hardware, exit signage and emergency lighting, and the presence of escape maps.

Incidentals:

- After storms and winter freezing, check for signs of roof leakage. Inspect the roof from both the exterior and interior.
The cost of preventative maintenance is markedly less than the cost of resulting repairs, which occur as a result of the failure of a structure. At the bottom of the graph, the dotted line represents normal wear on a building. As in all structures, maintenance will have to occur periodically throughout the life of a structure. The line at the bottom shows the cost of maintenance and use of the building if failures are arrested before they begin. Although this may seem to be a continual monetary drain, preventative maintenance saves money substantially.

Point (B) indicates the cost of repairs if minor repairs are needed. Examples of this include neglecting to clean out gutters that may lead to drainage issues and minor water infiltration. The cost of the repairs to the structure are still low compared to major failures, but are still considerably higher than the cost of regular maintenance.

Last is the cost of repairing major failures, which may develop as a result of neglect. As can be seen in line (C), the cost of major repairs as a result of lack of preventative maintenance is drastically higher than the cost of continual maintenance. This is proof that although preventative maintenance may be tedious, it is a way of saving money over the years. A few dollars invested early will result in large savings in years to come.
METHODS OF TREATMENT

The Secretary of the Interior's Standards for the Treatment of Historic Properties

Stemming from over 100 years of preservation ethics in both the United States and Europe, The Secretary of the Interior's Standards for the Treatment of Historic Properties are easily understood principles developed to aid in the protection of our nation’s irreplaceable cultural resources. These standards may be applied to buildings, sites, structures, and objects. These Standards provide concepts about maintaining, repairing, and replacing historic materials, as well as designing new additions or making alterations, but cannot be used solely to make essential decisions about which features of a historic property should be saved and those that might be changed. Once an appropriate treatment is selected, however, the Standards can provide a philosophical consistency to the work.

The Standards consist of four distinct but interrelated approaches to the treatment of historic properties – Preservation, Restoration, Rehabilitation, and Reconstruction. Choosing the appropriate treatment for a historic building or landscape is critical. This choice will always depend on multiple factors, including historical significance, physical condition, proposed use, and intended interpretation. However, since Sheldon Jackson College is a significant resource in American history and has been designated as a National Historic Landmark, the approaches of Preservation or Restoration will most likely be called for. Buildings that contribute to the significance of a collection of historic resources, but are not individually listed in the National Register or as a National Historic Landmark, more frequently will undergo Rehabilitation for a compatible new use. The Reconstruction approach is not a recommended treatment unless there are no other viable options available, and even in this case, great care should be taken when reconstructing a resource.

Regardless of the treatment, code requirements will need to be taken into consideration, but if hastily or poorly designed, code-required work may jeopardize a building's materials as well as its historic character. Therefore, if a building needs to undergo a seismic retrofit for example, modifications to the historic appearance should be minimal. Abatement of lead paint and asbestos within historic buildings requires particular care in order to keep important historic finishes from being adversely affected. Additionally, alterations and new construction needed to meet accessibility requirements under the Americans with Disabilities Act of 1990 should be designed to minimize material loss and visual change to a historic building.

The approaches of Preservation, Restoration, and Rehabilitation, as defined by the Secretary of the Interior, are described below:

Preservation

Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of a historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, plumbing systems, and other code-required work to make properties functional is appropriate within a preservation project.
1. A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.

2. The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

When to use Preservation as an approach:

When the property's distinctive materials, features, and spaces are essentially intact and thus convey the historic significance without extensive repair or replacement; when depiction at a particular period of time is not appropriate; and when a continuing or new use does not require additions or extensive alterations, Preservation may be considered as a treatment.

Restoration

Restoration is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

1. A property will be used as it was historically or be given a new use that reflects the property's restoration period.

2. Materials and features from the restoration period will be retained and preserved. The removal of materials or alteration of features, spaces, and spatial relationships that characterize the period will not be undertaken.

3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate and conserve materials and features from the restoration
4. Materials, features, spaces, and finishes that characterize other historical periods will be documented prior to their alteration or removal.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize the restoration period will be preserved.

6. Deteriorated features from the restoration period will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials.

7. Replacement of missing features from the restoration period will be substantiated by documentary and physical evidence. A false sense of history will not be created by adding conjectural features, features from other properties, or by combining features that never existed together historically.

8. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

9. Archeological resources affected by a project will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

10. Designs that were never executed historically will not be constructed.

When to use Restoration as an approach:

When the property's design, architectural, or historical significance during a particular period of time outweighs the potential loss of extant materials, features, spaces, and finishes that characterize other historical periods; when there is substantial physical and documentary evidence for the work; and when contemporary alterations and additions are not planned, Restoration may be considered as a treatment. Prior to undertaking work, a particular period of time, i.e., the restoration period, should be selected and justified, and a documentation plan for Restoration developed.

Rehabilitation

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features that convey its historical, cultural, or architectural values.

1. A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and spatial relationships.

2. The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.
6. Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

9. New additions, exterior alterations, or related new construction will not destroy historic materials, features, and spatial relationships that characterize the property. The new work will be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.

10. New additions and adjacent or related new construction will be undertaken in such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

When to use Rehabilitation as an approach:
When repair and replacement of deteriorated features are necessary; when alterations or additions to the property are planned for a new or continued use; and when depiction at a particular period of time is not appropriate, Rehabilitation may be considered as a treatment.
HISTORIC BUILDINGS

A great number of the existing buildings on the Sheldon Jackson College campus are deemed historic, that is, they are at least fifty years old. This includes the Ludlow and Peabody buildings – Allen Hall, Fraser Hall, Stevenson Hall, North Pacific Hall, Whitmore Hall, and the Power Plant/Laundry Building – all of which are critical to the feelings and associations of the campus design. Additional historic buildings, not attributed to Ludlow and Peabody, include Sage Memorial Building, Tillie Paul Manor, Ceramics Building, Houk House, and the Sheldon Jackson Museum. All of these buildings, combined with the more modern buildings, make up the Sheldon Jackson College National Historic Landmark, as designated by the National Park Service in 2001. Sheldon Jackson College is a very special place and every effort should be made to maintain and preserve its character.

Inventory and Research

It is important to create an inventory for each and every historic building to identify all that currently exists, supplemented by historical research, to pinpoint materials and features that are original or may be missing. An inventory is a helpful tool to recognize those materials and features that are essential in defining the historic character of the buildings, and which need to be retained in order to preserve this character. Graduate students from the University of Oregon visited the Sheldon Jackson College campus in April 2004 to undertake this task, and their work may be referenced.

Deteriorated materials and features identified during the inventory should be protected through initial stabilization measures until additional work can be performed. Any temporary stabilization measures should detract as little as possible from the buildings. An overall evaluation of the campus buildings’ physical condition should be performed while the inventory process is completed and any problems, such as water damage or peeling paint, should be noted at this time.

It may be wise for Sheldon Jackson College to create an inventory for the non-historic buildings on the campus as well, as these buildings will eventually be fifty years old and in need of restoration work themselves.

Establishing Goals

Once all inventory and historical research has been performed, goals should be set for the purpose of preserving and restoring the historic campus buildings. These goals should be based on the “best case scenario” for overall preservation. The best case scenario would include returning the buildings to their appearance during the college’s period of significance, 1910 to 1944, as identified by the National Historic Landmark nomination. This would include returning to wood shingle roofs and restoring architectural details, among other things, as found in historic documents and photographs.

The Secretary of the Interior’s Standards for Preservation Planning suggest a goal statement identifying the following:

- The goal, including its context
- The activities required to achieve the goal
- The most appropriate methods or strategies for carrying out the activities
- A schedule within which the activities should be completed
- The amount of effort required to accomplish the goal, as well as a way to evaluate progress toward its accomplishment

Once this has been identified, Sheldon Jackson College will know how much support will be required, in the form of labor and money, to complete the work. As funding is likely to be tight, the work may need to be ranked in importance with consideration to the severity of deterioration, accessibility, and other technical considerations.

Retain the Character-Defining Features

It cannot be stressed enough how important it is to retain the building’s character-defining features. A list of these features is noted earlier in this document and should be consulted without hesitation. When a building loses its character-defining features, it becomes unrecognizable and no longer possesses the historic integrity it once had, a trend occurring too often throughout the world. When engaging in any type of rehabilitation work, the college is strongly encouraged not to alter these features and to engage in appropriate restoration or preservation methods where necessary.

Repairing Historic Materials and Features

When repairing the historic fabric of a building, care should be taken to use the least invasive methods possible and refer to the Secretary of the Interior’s Standards often. As it may be necessary to use contemporary materials for some aspects of the work, Sheldon Jackson College should replace as much of the historic fabric of the buildings as possible “in kind,” that is, if not the same material, using a material that has the same texture, size, dimension, feeling, and association as the original. This is especially critical for the building’s character-defining features, including windows, siding material, and elements like protruding roof brackets. Preservation Briefs and other technical publications are distributed by the National Park Service to aid in this type of undertaking and are a helpful reference.

Replacing Deteriorated Features

If a historic feature is missing or is significantly deteriorated, and where a more discrete method of intervention is inadequate or not possible, it may be necessary to replace the feature using a surviving example as the model. With the exception of new mechanical system components and hidden structural reinforcement, the same type of material should be used for the replacement and the materials should match both physically and visually.

Ongoing Maintenance

With any type of historic resource, ongoing maintenance is a critical component for its survival. A schedule for monitoring and maintenance should be developed to identify and treat any potential problems. Any repairs should be made in a timely and appropriate manner, and should be performed by qualified individuals. All maintenance should be documented to provide a record for any future treatments, and maintenance should be recorded soon after it takes place to assure its accuracy.

As historic buildings undoubtedly have many maintenance needs, many serious problems can be avoided by conducting cyclical maintenance. For example, gutters and downspouts should be cleaned and checked regularly, as water and moisture are the enemies of historic
buildings. A good coat of paint should be kept on the buildings at all times to protect the wood and deter water penetration. Additionally, vegetation should be cut back or removed when it encroaches upon a building.

Other Considerations

The Ludlow and Peabody buildings at Sheldon Jackson College, as well as the other historic buildings, are a unique resource. Great care should be taken to preserve their wonderful characteristics. It should be remembered that when new construction occurs on the campus, the historic buildings will be affected either directly or indirectly. For example, creating parking spaces behind Allen Hall will undoubtedly be a convenience, but would break up the spatial orientation of the campus. Patrons would then enter at the building’s back door, making the historic grand entrance obsolete. Care should be taken not to allow this type of change to happen, as the buildings’ main façades have their own story to tell.
FUTURE BUILDINGS

The goal for any new construction on the Sheldon Jackson College campus should be to detract as little as possible from the symmetrical quadrangle plan. The organization of the historic landscape is a key character-defining feature of the campus. Any modification to its organization would lower the integrity of the campus. No new construction should occur within the quad’s boundaries.

A treatment plan is essential to the overall preservation plan. The new building recommendations should provide guidance for future work on the campus. The recommendations in this document are designed to maintain the remaining historic character-defining features while allowing for new uses.

Inventory and Research
Prior to proposing the construction of a new building, complete and thorough research should be performed to determine the impact that a new building will have on the historic campus, especially on the quad. Research on the campus, and historic building inventories have already been complied by student from the University of Oregon.

Space Between Buildings
The open space between the buildings that face the quad should remain open. These spaces should be surfaced with lawn and pedestrian pathways should be maintained. Vehicle access and parking should be restricted. Maintaining the open spaces between buildings enforces the historic character of the original campus plan. The space between buildings should not be removed or modified by additions to historic buildings.

Existing Buildings
The original Ludlow and Peabody buildings and the museum should remain in their current locations. Any additions to existing buildings should be placed on the rear elevation so as to impact the appearance of the quad as little as possible. Ideally, the Armstrong Administration Building should be removed from its current location, as it interrupts the symmetrical plan and the open lawn of the quad. Any new buildings should be located outside the perimeter of the quad and should not block the view of Sitka Sound.

Hazardous Materials and Environmentally Sensitive Areas
Any environmentally sensitive areas found on the site should be addressed appropriately. Local and federal standards should be adhered to in doing so. In addition, any hazardous materials found on the campus should be dealt with appropriately. The proper removal of contaminated soil, building materials, and debris shall be performed under the guidance of hazardous material removal professionals. An environmental assessment specialist may need to be consulted depending on the scenario. The cost for proper removal can be a financial burden. Fundraising and grants should be pursued to cover the large portion of the cost.

Accessibility and Safety Considerations
The current accessibility of the campus satisfies the Americans with Disabilities Act and shall be maintained in its current condition. Any improvements, modifications, or additions to
the pathways, parking lots, and building entrances should be sympathetic and unobtrusive to the character-defining features of the landscape and buildings.

Recording Construction Activity

All work performed on the campus should be recorded in a construction log. To maintain continuity throughout the preservation process, as-built drawings of the campus should be produced at the end of each phase. After the completion of the recommended modifications, a complete and final set of as-built drawings of the campus should be produced. Any changes in the landscape should be clearly recorded. Photographic documentation should also be used as a method of recording built improvements.
FUNDRAISING

Fundraising for Sheldon Jackson College should be an ongoing effort. The college has already been awarded a prestigious Getty Grant and should begin to identify other possible grant sources as soon as possible. It is a major undertaking to perform preservation and restoration work on a college campus, and Sheldon Jackson College should be prepared to devote a large effort to securing aid in all forms, including volunteer work, monetary funds, gifts in kind, media publicity, and material donations. Establishing a fundraising committee would be helpful so that proper attention can be given to this large undertaking.

An immediate issue is to address the soliciting of funds from grant makers in both the private and public sectors. While fundraisers within the Sitka community and college alumni will be helpful throughout the process, large grants will be needed not only to help with the preservation work on campus, but also to attract the interest of future donors. Receiving large grants, such as the Getty Grant, or constructing partnerships can also bring positive media attention to the college’s preservation and restoration progress.

Before applying or making contact with trusts and foundations, it is good to be knowledgeable about each one. Most foundations have a website that offers their history, grantee requirements, annual reports, and describes their application process. By doing this initial research, it will be clear whether the college is eligible for the grant and if the grant is right for the college. Also, it is important to know the deadlines of applications and how they mesh with the timeline of any current or future project. Will you get the funding by the time you need it? Most trusts and foundations also ask for a project timeline and an estimated budget, therefore it is helpful to have this on hand prior to applying.

There are two major types of grants that would be helpful for the college’s various projects: donors, or one-time grants, and renewable grants or partnerships. Since Sheldon Jackson College is a Nation Historic Landmark possessing a valuable source of America’s history, the college may be eligible for matching grants and other preservation or history-related funding, such as that which the National Trust for Historic Preservation offers. Establishing a close connection to alumni or church-related groups could also be a source for significant renewable funding.

It is very important to keep thorough records of all donations, grants, materials, and services that Sheldon Jackson College receives. This is imperative not only for any legal issues but for donor relations as well. To know who gave what amount and on what date allows the college to show proper recognition and gratitude. Maintaining good relationships will help continue the receipt of donations, and may even increase funds collected in the future.
CONCLUSION

Sheldon Jackson College is a unique site that documents a piece of American heritage. It is the goal of this document to help the college and its community restore and preserve its history-rich resources while enabling them to make wise decisions when constructing new buildings or changing the functions of historic buildings. Additionally, it is hoped that the college will take heed with in landscape features, especially as they relate to the historic campus quadrangle, and include only those features that are sympathetic to the historic campus plan with its buildings and open space.

Sheldon Jackson College is to be commended for the work already performed and for receiving a prestigious Getty Trust Grant. More work and financial assistance will be needed throughout the coming years, and with this, it is hoped that this document serves its intentions well.
RESOURCE APPENDIX

Preservation Briefs

The National Park Service publishes a series of easy-to-read Preservation Briefs giving guidance on preserving, restoring, and rehabilitating historic buildings to homeowners, preservation professionals, organizations, and government agencies. There are currently forty-two Preservation Briefs in publication, all of which can be downloaded from the National Park Service Cultural Resource’s website at: www2.cr.nps.gov/tps/briefs/presbhom.htm. Hard copies are available for purchase by calling (866) 512-1800. The most up-to-date versions of the Preservation Briefs should be used.

The following is a selected list of Preservation Briefs that strongly pertain to repair and maintenance issues at Sheldon Jackson College:

- Preservation Brief #6: *Dangers of Abrasive Cleaning to Historic Buildings* by Anne E. Grimmer.

The following is a list of additional Preservation Briefs that can be downloaded or purchased for reference during restoration efforts at Sheldon Jackson College:

- Preservation Brief #16: *The Use of Substitute Materials on Historic Building Exteriors* by Sharon C. Park.
- Preservation Brief #28: *Painting Historic Interiors* by Sara B. Chase.
- Preservation Brief #37: *Appropriate Methods for Reducing Lead-Paint Hazards in Historic Housing* by Sharon C. Park and Douglas C. Hicks.

Additional National Park Service Web Sites

• Secretary of the Interior’s Standards for Preservation Planning: www.cr.nps.gov.local-law/arch_stands_1.htm
• Standards for Preservation:
 www2.cr.nps.gov/tps/standguide/preserve/preserve_standards.htm
• Guidelines for Preserving Historic Buildings – Accessibility Considerations:
 www2.cr.nps.gov/tps/standguide/preserve/preserve_access.htm
• Guidelines for Preserving Historic Buildings – Energy Efficiency:
 www2.cr.nps.gov/tps/standguide/preserve/preserve_energyeff.htm
• Standards for Restoration: www2.cr.nps.gov/tps/standguide/restore/restore_index.htm
• Standards for Rehabilitating: www2.cr.nps.gov/tps/standguide/rehab/rehab_index.htm
BIBLIOGRAPHY

Contract between R.K. Burke and Sheldon Jackson School, May 7, 1929; Sheldon Jackson College Archives.

Historic American Buildings Survey, Sheldon Jackson College, Richard H. Allen Memorial Hall; HABS No.AK-105-A

Letter to Edna R. Voss, Superintendent of Field Work, NY, NY; January 6, 1922; Sheldon Jackson College Archives.

The Thlinget; vol. 1 no. 7; February 1911.

Historic Photos

